Responses of Lotus corniculatus to environmental change .1. Effects of elevated CO2, temperature and drought on growth and plant development

被引:45
|
作者
Carter, EB [1 ]
Theodorou, MK [1 ]
Morris, P [1 ]
机构
[1] AFRC,INST GRASSLAND & ENVIRONM RES,DEPT CELL BIOL,ABERYSTWYTH SY23 3EB,DYFED,WALES
关键词
Lotus corniculatus; climate change; growth development;
D O I
10.1046/j.1469-8137.1997.00733.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Five clonal plants of three genotypes of Lotus corniculatus were grown in each of eight controlled environments under combinations of two temperature regimes (18/10 degrees C and 25/15 degrees C), two CO2 concentrations (ambient and 700 ppmv) and two water applications (ad libitum or 60% droughted). Plants were harvested at full flower and measurements made of plant growth and development. Of the three environmental variables studied, higher growth temperatures resulted in the largest number of significant changes to the measured variables. Reproductive capacity, growth rate, shoot biomass, water use efficiency and chlorophyll content were all enhanced by raising the growth temperature from 18 to 25 degrees C. Doubling the CO2 concentration enhanced the growth rate, shoot biomass and water use efficiency and ameliorated some of the effects of drought, including reproductive capacity, and biomass production, but reduced flowering lime, specific leaf area, and chlorophyll content of both droughted and undroughted plants. Drought alone reduced reproductive capacity, growth rate and above ground biomass but significantly increased root biomass in all environments. The agronomic effects resulting from a combined increase in growth temperature, doubled CO2 concentration and mild drought in this experiment were a shorter vegetative period and an increase in biomass, but a fall in reproductive capacity.
引用
收藏
页码:245 / 253
页数:9
相关论文
共 50 条
  • [31] Photosynthesis and plant growth at elevated levels of CO2
    Makino, A
    Mae, T
    PLANT AND CELL PHYSIOLOGY, 1999, 40 (10) : 999 - 1006
  • [32] Interactive Effects of Elevated CO2, Drought, and Warming on Plants
    Zhenzhu Xu
    Hideyuki Shimizu
    Yasumi Yagasaki
    Shoko Ito
    Yuanrun Zheng
    Guangsheng Zhou
    Journal of Plant Growth Regulation, 2013, 32 : 692 - 707
  • [33] Interactive Effects of Elevated CO2, Drought, and Warming on Plants
    Xu, Zhenzhu
    Shimizu, Hideyuki
    Yagasaki, Yasumi
    Ito, Shoko
    Zheng, Yuanrun
    Zhou, Guangsheng
    JOURNAL OF PLANT GROWTH REGULATION, 2013, 32 (04) : 692 - 707
  • [34] Temperature dependence of growth, development, and photosynthesis in maize under elevated CO2
    Kim, Soo-Hyung
    Gitz, Dennis C.
    Sicherb, Richard C.
    Baker, Jeffrey T.
    Timlin, Dennis J.
    Reddy, Vangirnalla R.
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2007, 61 (03) : 224 - 236
  • [35] Responses of root hair development to elevated CO2
    Niu, Yao Fang
    Jin, Gu Lei
    Chai, Ru Shan
    Wang, Huan
    Zhang, Yong Song
    PLANT SIGNALING & BEHAVIOR, 2011, 6 (09) : 1414 - 1417
  • [36] Impact of Elevated CO2 and Temperature on Growth, Development and Nutrient Uptake of Tomato
    Rangaswamy, Tejaswini C.
    Sridhara, Shankarappa
    Manoj, Konapura Nagaraja
    Gopakkali, Pradeep
    Ramesh, Nandini
    Shokralla, Shadi
    Zin El-Abedin, Tarek K.
    Almutairi, Khalid F.
    Elansary, Hosam O.
    HORTICULTURAE, 2021, 7 (11)
  • [37] INHIBITION OF WHOLE-PLANT RESPIRATION BY ELEVATED CO2 AS MODIFIED BY GROWTH TEMPERATURE
    ZISKA, LH
    BUNCE, JA
    PHYSIOLOGIA PLANTARUM, 1993, 87 (04) : 459 - 466
  • [38] A search for predictive understanding of plant responses to elevated [CO2]
    Luo, YQ
    Reynolds, J
    Wang, YP
    Wolfe, D
    GLOBAL CHANGE BIOLOGY, 1999, 5 (02) : 143 - 156
  • [39] Transgenerational effects of global environmental change:: long-term CO2 and nitrogen treatments influence offspring growth response to elevated CO2
    Lau, Jennifer A.
    Peiffer, Jill
    Reich, Peter B.
    Tiffin, Peter
    OECOLOGIA, 2008, 158 (01) : 141 - 150
  • [40] Transgenerational effects of global environmental change: long-term CO2 and nitrogen treatments influence offspring growth response to elevated CO2
    Jennifer A. Lau
    Jill Peiffer
    Peter B. Reich
    Peter Tiffin
    Oecologia, 2008, 158