A numerical dressing method for the nonlinear superposition of solutions of the KdV equation

被引:13
作者
Trogdon, Thomas [1 ]
Deconinck, Bernard [2 ]
机构
[1] NYU, Courant Inst Math Sci, New York, NY 10012 USA
[2] Univ Washington, Dept Appl Math, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
Riemann-Hilbert problems; Korteweg-de Vries equation; finite-genus solutions; Riemann surfaces; numerical analysis; RIEMANN-HILBERT PROBLEMS; STEEPEST DESCENT METHOD;
D O I
10.1088/0951-7715/27/1/67
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we present the unification of two existing numerical methods for the construction of solutions of the Korteweg-de Vries (KdV) equation. The first method is used to solve the Cauchy initial-value problem on the line for rapidly decaying initial data. The second method is used to compute finite-genus solutions of the KdV equation. The combination of these numerical methods allows for the computation of exact solutions that are asymptotically (quasi-)periodic finite-gap solutions and are a nonlinear superposition of dispersive, soliton and (quasi-)periodic solutions in the finite (x, t)-plane. Such solutions are referred to as superposition solutions. We compute these solutions accurately for all values of x and t.
引用
收藏
页码:67 / 86
页数:20
相关论文
共 50 条
  • [41] Fourier analysis of the local discontinuous Galerkin method for the linearized KdV equation
    Le Roux, Daniel Y.
    GEM-INTERNATIONAL JOURNAL ON GEOMATHEMATICS, 2022, 13 (01)
  • [42] Numerical inverse scattering transform for the derivative nonlinear Schrödinger equation
    Cui, Shikun
    Wang, Zhen
    NONLINEARITY, 2024, 37 (10)
  • [43] Periodic finite-band solutions to the focusing nonlinear Schrödinger equation by the Fokas method: inverse and direct problems
    Shepelsky, Dmitry
    Karpenko, Iryna
    Bogdanov, Stepan
    Prilepsky, Jaroslaw E.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2024, 480 (2286):
  • [44] Numerical analysis and simulation for a nonlinear wave equation
    Rincon, M. A.
    Quintino, N. P.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 296 : 247 - 264
  • [45] Weakly nonlinear wavepackets in the Korteweg-de Vries equation: the KdV/NLS connection
    Boyd, JP
    Chen, GY
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2001, 55 (4-6) : 317 - 328
  • [46] Numerical soliton solutions of improved Boussinesq equation
    Mohyud-Din, Syed Tauseef
    Yildirim, Ahmet
    Sezer, Sefa Anil
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2011, 21 (6-7) : 822 - 827
  • [47] The exact solutions for a nonisospectral nonlinear Schrodinger equation
    Ning, Tong-ke
    Zhang, Weiguo
    Jia, Gao
    CHAOS SOLITONS & FRACTALS, 2009, 42 (02) : 1100 - 1105
  • [48] Bosonization, singularity analysis, nonlocal symmetry reductions and exact solutions of supersymmetric KdV equation
    Gao, Xiao Nan
    Lou, S. Y.
    Tang, Xiao Yan
    JOURNAL OF HIGH ENERGY PHYSICS, 2013, (05):
  • [49] The classification of the single traveling wave solutions to the KdV equation with higher-order nonlinearity
    Yang, Xuefei
    Zhang, Kaixuan
    MODERN PHYSICS LETTERS B, 2022, 36 (06):
  • [50] Dispersive and soliton perturbations of finite-genus solutions of the KdV equation: Computational results
    Trogdon, Thomas
    Deconinck, Bernard
    PHYSICS LETTERS A, 2014, 378 (7-8) : 617 - 622