A numerical dressing method for the nonlinear superposition of solutions of the KdV equation

被引:13
|
作者
Trogdon, Thomas [1 ]
Deconinck, Bernard [2 ]
机构
[1] NYU, Courant Inst Math Sci, New York, NY 10012 USA
[2] Univ Washington, Dept Appl Math, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
Riemann-Hilbert problems; Korteweg-de Vries equation; finite-genus solutions; Riemann surfaces; numerical analysis; RIEMANN-HILBERT PROBLEMS; STEEPEST DESCENT METHOD;
D O I
10.1088/0951-7715/27/1/67
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we present the unification of two existing numerical methods for the construction of solutions of the Korteweg-de Vries (KdV) equation. The first method is used to solve the Cauchy initial-value problem on the line for rapidly decaying initial data. The second method is used to compute finite-genus solutions of the KdV equation. The combination of these numerical methods allows for the computation of exact solutions that are asymptotically (quasi-)periodic finite-gap solutions and are a nonlinear superposition of dispersive, soliton and (quasi-)periodic solutions in the finite (x, t)-plane. Such solutions are referred to as superposition solutions. We compute these solutions accurately for all values of x and t.
引用
收藏
页码:67 / 86
页数:20
相关论文
共 50 条
  • [1] A Riemann-Hilbert problem for the finite-genus solutions of the KdV equation and its numerical solution
    Trogdon, Thomas
    Deconinck, Bernard
    PHYSICA D-NONLINEAR PHENOMENA, 2013, 251 : 1 - 18
  • [2] Numerical. realizations of solutions of the stochastic KdV equation
    Herman, Russell L.
    Rose, Andrew
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2009, 80 (01) : 164 - 172
  • [3] A comparative study of numerical solutions of a class of KdV equation
    Khattak, A. J.
    Siraj-ul-Islam
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 199 (02) : 425 - 434
  • [4] A numerical method to compute the scattering solution for the KdV equation
    Fermo, Luisa
    van der Mee, Cornelis
    Seatzu, Sebastiano
    APPLIED NUMERICAL MATHEMATICS, 2020, 149 (149) : 3 - 16
  • [5] Numerical Solutions of the KdV Equation Using B-Spline Functions
    Lakestani, Mehrdad
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2017, 41 (A2): : 409 - 417
  • [6] Numerical method for generalized time fractional KdV-type equation
    Kong, Desong
    Xu, Yufeng
    Zheng, Zhoushun
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2020, 36 (04) : 906 - 936
  • [7] Geometric numerical schemes for the KdV equation
    D. Dutykh
    M. Chhay
    F. Fedele
    Computational Mathematics and Mathematical Physics, 2013, 53 : 221 - 236
  • [8] Geometric numerical schemes for the KdV equation
    Dutykh, D.
    Chhay, M.
    Fedele, F.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2013, 53 (02) : 221 - 236
  • [9] On the support of solutions to the generalized KdV equation
    Kenig, CE
    Ponce, G
    Vega, L
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2002, 19 (02): : 191 - 208
  • [10] Primitive potentials and bounded solutions of the KdV equation
    Dyachenko, S.
    Zakharov, D.
    Zakharov, V.
    PHYSICA D-NONLINEAR PHENOMENA, 2016, 333 : 148 - 156