Photonic Nanowires: From Subwavelength Waveguides to Optical Sensors

被引:157
作者
Guo, Xin [1 ]
Ying, Yibin [2 ]
Tong, Limin [1 ]
机构
[1] Zhejiang Univ, State Key Lab Modern Optic Instrumentat, Dept Opt Engn, Hangzhou 310027, Zhejiang, Peoples R China
[2] Zhejiang Univ, Coll Biosystems Engn & Food Sci, Hangzhou 310027, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
GUIDING PROPERTIES; METAL NANOWIRES; DIAMETER SILICA; NANOFIBERS; SCALE; NANOSTRUCTURES; MICROFIBERS; FABRICATION; GROWTH;
D O I
10.1021/ar400232h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nanowires are one-dimensional (1D) nanostructures with comparatively large aspect ratios, which can be useful in manipulating electrons, photons, plasmons, phonons, and atoms for numerous technologies. Among various nanostructures for low-dimensional photonics, the 1D nanowire is of great importance owing to its ability to route tightly confined light fields in single-mode with lowest space and material requirements, minimized optical path, and high mechanical flexibilities. In recent years, nanowire photonics have increasingly been attracting scientists' interests for both fundamental studies and technological applications because 1D nanowires have more favorable properties than many other structures, such as OD quantum dots (QDs) and 2D films. As subwavelength waveguides, free-standing nanowires fabricated by either chemical growth or physical drawing techniques surpass nanowaveguides fabricated by almost all other means in terms of sidewall smoothness and diameter uniformity. This conveys their low waveguiding losses. With high index contrast (typically higher than 0.5) between the core and the surrounding or with surface plasmon resonance, a nanowire can guide light with tight optical confinement. For example, the effective mode area is less than lambda(2)/10 for a dielectric nanowire or less than lambda(2)/100 for a metal nanowire, where lambda is the vacuum wavelength of the light. As we increase the wavelength-to-diameter ratio (WDR) of a nanowire, we can enlarge the fractional power of the evanescent fields in the guiding modes to over 80% while maintaining a small effective mode area, which may enable highly localized near-field Interaction between the guided fields and the surrounding media. These favorable properties have opened great opportunities for optical sensing on the single-nanowire scale. However, several questions arise with ongoing research. With a deep-subwavelength cross-section, how can we efficiently couple light into a single nanowire? How can we fabricate a nanowire with low optical loss? How can we activate a passive nanowire for optical sensing? And lastly, how can we adapt mature optical measurement technology onto a nanowire? In this Account, we highlight our initial attempts to address the above-mentioned challenges. First, we introduce the fabrication and functionalization of low-loss photonic nanowires. We show that nanowires fabricated by either top-down physical drawing (e.g., for amorphous nanowires) or bottom-up chemical growth (e.g., for crystalline nanowires) can yield excellent geometric and structural uniformities with surface roughness down to atomic level and minimize the scattering loss for subwavelength optical or plasmonic waveguiding. Then, relying on a near-field fiber-probe micromanipulation, we demonstrate optical launching of single nanowires by evanescent coupling, with coupling efficiency up to 90% for dielectric nanowires and 80% for plasmonic nanowires. Third, we discuss the waveguiding properties of nanowires and emphasize their outstanding capability of waveguiding tightly confined optical fields with high fractional evanescent fields. In addition, we briefly show a balance between the loss, confinement, and bandwidth in a waveguiding nanowire. Fourthly, we present promising approaches to single-nanowire optical sensors. By measuring optical absorption or spectral transmission of a nanowire and activating nanowires with sensitive dopants, we demonstrate a single-nanowire optical sensor with high sensitivity, fast response, and low optical power. This may lead to a novel platform for optical sensing at nanoscale. Finally, we conclude with an outlook for future challenges in the light manipulation and sensing applications of photonic nanowires.
引用
收藏
页码:656 / 666
页数:11
相关论文
共 57 条
  • [1] Ultra-low-loss optical fiber nanotapers[J]. Brambilla, G;Finazzi, V;Richardson, DJ. OPTICS EXPRESS, 2004(10)
  • [2] The Ultimate Strength of Glass Silica Nanowires[J]. Brambilla, Gilberto;Payne, David N. NANO LETTERS, 2009(02)
  • [3] Optical fiber-based evanescent ammonia sensor[J]. Cao, WQ;Duan, YX. SENSORS AND ACTUATORS B-CHEMICAL, 2005(02)
  • [4] Strong coupling of single emitters to surface plasmons[J]. Chang, D. E.;Sorensen, A. S.;Hemmer, P. R.;Lukin, M. D. PHYSICAL REVIEW B, 2007(03)
  • [5] Photonic applications of one-dimensional organic single-crystalline nanostructures: optical waveguides and optically pumped lasers[J]. Cui, Qiu Hong;Zhao, Yong Sheng;Yao, Jiannian. JOURNAL OF MATERIALS CHEMISTRY, 2012(10)
  • [6] Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species[J]. Cui, Y;Wei, QQ;Park, HK;Lieber, CM. SCIENCE, 2001(5533)
  • [7] Synthesis of branched 'nanotrees' by controlled seeding of multiple branching events[J]. Dick, KA;Deppert, K;Larsson, MW;Mårtensson, T;Seifert, W;Wallenberg, LR;Samuelson, L. NATURE MATERIALS, 2004(06)
  • [8] Silver nanowires as surface plasmon resonators[J]. Ditlbacher, H;Hohenau, A;Wagner, D;Kreibig, U;Rogers, M;Hofer, F;Aussenegg, FR;Krenn, JR. PHYSICAL REVIEW LETTERS, 2005(25)
  • [9] Femtosecond laser fabricated fiber Bragg grating in microfiber for refractive index sensing[J]. Fang, X.;Liao, C. R.;Wang, D. N. OPTICS LETTERS, 2010(07)
  • [10] Polymer single-nanowire optical sensors[J]. Gu, Fuxing;Zhang, Lei;Yin, Xuefeng;Tong, Limin. NANO LETTERS, 2008(09)