Discriminative Reconstruction for Hyperspectral Anomaly Detection With Spectral Learning

被引:48
|
作者
Lei, Jie [1 ]
Fang, Shuo [1 ]
Xie, Weiying [1 ]
Li, Yunsong [1 ]
Chang, Chein-I [2 ,3 ,4 ,5 ]
机构
[1] Xidian Univ, State Key Lab Integrated Serv Networks, Xian 710071, Peoples R China
[2] Dalian Maritime Univ, Informat & Technol Coll, Ctr Hyperspectral Imaging Remote Sensing, Dalian 116026, Peoples R China
[3] Natl Yunlin Univ Sci & Technol, Dept Comp Sci & Informat Engn, Touliu 64002, Yunlin, Taiwan
[4] Univ Maryland, Dept Comp Sci & Elect Engn, Remote Sensing Signal & Image Proc Lab, Baltimore, MD 21250 USA
[5] Providence Univ, Dept Comp Sci & Informat Management, Taichung 02912, Taiwan
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2020年 / 58卷 / 10期
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Anomaly detection; Hyperspectral imaging; Image reconstruction; Decoding; Detectors; Detection algorithms; hyperspectral image (HSI); reconstruction; spectral learning; KERNEL-RX-ALGORITHM; IMAGE CLASSIFICATION; TARGET DETECTION; LOW-RANK;
D O I
10.1109/TGRS.2020.2982406
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Recently, autoencoder (AE)-based anomaly detection has drawn considerable interest in hyperspectral image (HSI) analysis. In this article, we propose a novel discriminative reconstruction method for hyperspectral anomaly detection images with spectral learning (SLDR). The proposed algorithm has the following innovations. First, we use the spectral error map (SEM) to detect anomalies because the SEM can preferably reflect the spectral similarity of each pixel between the input and the reconstruction. Second, the loss function of the proposed SLDR model additionally introduces the spectral angle distance (SAD), which constrains the model to generate a reconstruction having greater spectral similarity to the input. Third, a constraint is imposed on the encoder, forcing it to generate latent variables that obey a unit Gaussian distribution, which helps the decoder to reconstruct a better background with respect to the input. Compared with the ReedXiaoli (RX), collaborative representation detection (CRD), attribute and edge-preserving filtering-based anomaly detection (AED) and adversarial autoencoder-based anomaly detection (AAE), through two real HSI data sets, the detection performance of the proposed SLDR method is found to be competitive.
引用
收藏
页码:7406 / 7417
页数:12
相关论文
共 50 条
  • [31] Exploiting Embedding Manifold of Autoencoders for Hyperspectral Anomaly Detection
    Lu, Xiaoqiang
    Zhang, Wuxia
    Huang, Ju
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (03): : 1527 - 1537
  • [32] Anomaly Detection in Hyperspectral Images via Regularization by Denoising
    Brandao Junior, Mauro Luiz
    Lima, Victor Carneiro
    Pereira Teixeira, Thomas Antonio Portugal
    de Lima, Eduardo Rodrigues
    Lopes, Renato da Rocha
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 8256 - 8265
  • [33] Feature Enhancement With Reverse Distillation for Hyperspectral Anomaly Detection
    Jin, Wenping
    Dang, Feng
    Zhu, Li
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21
  • [34] Anomaly Detection of Hyperspectral Image via Tensor Completion
    Wang, Jingxuan
    Xia, Yong
    Zhang, Yanning
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2021, 18 (06) : 1099 - 1103
  • [35] Hyperspectral Anomaly Detection Using Dual Window Density
    Tu, Bing
    Yang, Xianchang
    Zhou, Chengle
    He, Danbing
    Plaza, Antonio
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (12): : 8503 - 8517
  • [36] Target-to-Anomaly Conversion for Hyperspectral Anomaly Detection
    Chang, Chein-, I
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [37] Convolutional Transformer-Inspired Autoencoder for Hyperspectral Anomaly Detection
    He, Zhi
    He, Dan
    Xiao, Man
    Lou, Anjun
    Lai, Guanglin
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [38] Hyperspectral Anomaly Detection by Data Sphering and Sparsity Density Peaks
    Chang, Chein-, I
    Chen, Jie
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [39] Hyperbolic Space-Based Autoencoder for Hyperspectral Anomaly Detection
    Sun, He
    Wang, Lizhi
    Zhang, Lei
    Gao, Lianru
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [40] Background Representation Learning With Structural Constraint for Hyperspectral Anomaly Detection
    Ma, Xiaoxiao
    Zhang, Xiangrong
    Huyan, Ning
    Gu, Jing
    Tang, Xu
    Jiao, Licheng
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19