Discriminative Reconstruction for Hyperspectral Anomaly Detection With Spectral Learning

被引:48
|
作者
Lei, Jie [1 ]
Fang, Shuo [1 ]
Xie, Weiying [1 ]
Li, Yunsong [1 ]
Chang, Chein-I [2 ,3 ,4 ,5 ]
机构
[1] Xidian Univ, State Key Lab Integrated Serv Networks, Xian 710071, Peoples R China
[2] Dalian Maritime Univ, Informat & Technol Coll, Ctr Hyperspectral Imaging Remote Sensing, Dalian 116026, Peoples R China
[3] Natl Yunlin Univ Sci & Technol, Dept Comp Sci & Informat Engn, Touliu 64002, Yunlin, Taiwan
[4] Univ Maryland, Dept Comp Sci & Elect Engn, Remote Sensing Signal & Image Proc Lab, Baltimore, MD 21250 USA
[5] Providence Univ, Dept Comp Sci & Informat Management, Taichung 02912, Taiwan
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2020年 / 58卷 / 10期
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Anomaly detection; Hyperspectral imaging; Image reconstruction; Decoding; Detectors; Detection algorithms; hyperspectral image (HSI); reconstruction; spectral learning; KERNEL-RX-ALGORITHM; IMAGE CLASSIFICATION; TARGET DETECTION; LOW-RANK;
D O I
10.1109/TGRS.2020.2982406
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Recently, autoencoder (AE)-based anomaly detection has drawn considerable interest in hyperspectral image (HSI) analysis. In this article, we propose a novel discriminative reconstruction method for hyperspectral anomaly detection images with spectral learning (SLDR). The proposed algorithm has the following innovations. First, we use the spectral error map (SEM) to detect anomalies because the SEM can preferably reflect the spectral similarity of each pixel between the input and the reconstruction. Second, the loss function of the proposed SLDR model additionally introduces the spectral angle distance (SAD), which constrains the model to generate a reconstruction having greater spectral similarity to the input. Third, a constraint is imposed on the encoder, forcing it to generate latent variables that obey a unit Gaussian distribution, which helps the decoder to reconstruct a better background with respect to the input. Compared with the ReedXiaoli (RX), collaborative representation detection (CRD), attribute and edge-preserving filtering-based anomaly detection (AED) and adversarial autoencoder-based anomaly detection (AAE), through two real HSI data sets, the detection performance of the proposed SLDR method is found to be competitive.
引用
收藏
页码:7406 / 7417
页数:12
相关论文
共 50 条
  • [1] Spatial-Spectral Joint Reconstruction With Interband Correlation for Hyperspectral Anomaly Detection
    Zhu, Dehui
    Du, Bo
    Dong, Yanni
    Zhang, Liangpei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [2] Discriminative Reconstruction Constrained Generative Adversarial Network for Hyperspectral Anomaly Detection
    Jiang, Tao
    Li, Yunsong
    Xie, Weiying
    Du, Qian
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (07): : 4666 - 4679
  • [3] Weakly Supervised Discriminative Learning With Spectral Constrained Generative Adversarial Network for Hyperspectral Anomaly Detection
    Jiang, Tao
    Xie, Weiying
    Li, Yunsong
    Lei, Jie
    Du, Qian
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (11) : 6504 - 6517
  • [4] Spectral Adversarial Feature Learning for Anomaly Detection in Hyperspectral Imagery
    Xie, Weiying
    Liu, Baozhu
    Li, Yunsong
    Lei, Jie
    Chang, Chein-, I
    He, Gang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (04): : 2352 - 2365
  • [5] Spectral Difference Guided Graph Attention Autoencoder for Hyperspectral Anomaly Detection
    Li, Kun
    Ling, Qiang
    Wang, Yingqian
    Cai, Yaoming
    Qin, Yao
    Lin, Zaiping
    An, Wei
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [6] Spatial-Spectral Extraction for Hyperspectral Anomaly Detection
    Hu, Jing
    Zhang, Yujing
    Zhao, Minghua
    Li, Peng
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [7] Hyperspectral Anomaly Detection Using Reconstruction Fusion of Quaternion Frequency Domain Analysis
    Tu, Bing
    Yang, Xianchang
    He, Wei
    Li, Jun
    Plaza, Antonio
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (06) : 8358 - 8372
  • [8] Rapid Hyperspectral Anomaly Detection Using Discriminative Band Selection
    Yan, Hao-Fang
    Zhao, Yong-Qiang
    Chan, Jonathan Cheung-Wai
    Kong, Seong G.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [9] Spectral-Difference Low-Rank Representation Learning for Hyperspectral Anomaly Detection
    Zhang, Xiangrong
    Ma, Xiaoxiao
    Huyan, Ning
    Gu, Jing
    Tang, Xu
    Jiao, Licheng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (12): : 10364 - 10377
  • [10] Semisupervised Spectral Learning With Generative Adversarial Network for Hyperspectral Anomaly Detection
    Jiang, Kai
    Xie, Weiying
    Li, Yunsong
    Lei, Jie
    He, Gang
    Du, Qian
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (07): : 5224 - 5236