Reduced-density-matrix-functional theory at finite temperature: Theoretical foundations

被引:28
|
作者
Baldsiefen, Tim [1 ,2 ]
Cangi, Attila [1 ]
Gross, E. K. U. [1 ]
机构
[1] Max Planck Inst Mikrostrukturphys, D-06112 Halle, Germany
[2] Free Univ Berlin, Inst Theoret Phys, D-14195 Berlin, Germany
来源
PHYSICAL REVIEW A | 2015年 / 92卷 / 05期
关键词
NATURAL SPIN-ORBITALS; ELECTRON-DENSITY; EQUATION; SYSTEMS; ATOMS; SHAPE;
D O I
10.1103/PhysRevA.92.052514
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present an ab initio approach for grand-canonical ensembles in thermal equilibrium (eq) with local or nonlocal external potentials based on the one-reduced density matrix (1RDM). We show that equilibrium properties of a grand-canonical ensemble are determined uniquely by the eq-1RDM and establish a variational principle for the grand potential with respect to its 1RDM. We further prove the existence of a Kohn-Sham system capable of reproducing the 1RDM of an interacting system at finite temperature. Utilizing this Kohn-Sham system as an unperturbed system, we deduce a many-body approach to iteratively construct approximations to the correlation contribution of the grand potential.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Self-consistent-field method for correlation calculation within density-matrix-functional theory
    Irimia, Marinela
    Wang, Yu
    Fei, Yifan
    Wang, Jian
    PHYSICAL REVIEW A, 2023, 108 (05)
  • [42] Screening of binary alloys for warm temperature capture of elemental mercury using density functional theory
    Couling, David J.
    Nguyen, Hoang V.
    Green, William H.
    CHEMICAL ENGINEERING SCIENCE, 2012, 80 : 128 - 133
  • [43] Incorrect diatomic dissociation in variational reduced density matrix theory arises from the flawed description of fractionally charged atoms
    Van Aggelen, Helen
    Bultinck, Patrick
    Verstichel, Brecht
    Van Neck, Dimitri
    Ayers, Paul W.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2009, 11 (27) : 5558 - 5560
  • [44] Hybrid finite element/multipole expansion method for atomic Kohn-Sham density functional theory calculations
    Yalcin, M. A.
    Temizer, I.
    COMPUTER PHYSICS COMMUNICATIONS, 2023, 286
  • [45] Higher-order adaptive finite-element methods for orbital-free density functional theory
    Motamarri, Phani
    Iyer, Mrinal
    Knap, Jaroslaw
    Gavini, Vikram
    JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (20) : 6596 - 6621
  • [46] ATLAS: A real-space finite-difference implementation of orbital-free density functional theory
    Mi, Wenhui
    Shao, Xuecheng
    Su, Chuanxun
    Zhou, Yuanyuan
    Zhang, Shoutao
    Li, Quan
    Wang, Hui
    Zhang, Lijun
    Miao, Maosheng
    Wang, Yanchao
    Ma, Yanming
    COMPUTER PHYSICS COMMUNICATIONS, 2016, 200 : 87 - 95
  • [47] Higher-order adaptive finite-element methods for Kohn-Sham density functional theory
    Motamarri, P.
    Nowak, M. R.
    Leiter, K.
    Knap, J.
    Gavini, V.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 253 : 308 - 343
  • [48] Pd2N2, a proteiform molecule: Matrix isolation spectroscopy and density functional theory calculations
    Souvi, S. M.
    Tremblay, B.
    Perchard, J. P.
    Alikhani, M. E.
    JOURNAL OF CHEMICAL PHYSICS, 2009, 130 (07)
  • [49] Accurate finite element method for atomic calculations based on density functional theory and Hartree-Fock method
    Ozaki, Taisuke
    Toyoda, Masayuki
    COMPUTER PHYSICS COMMUNICATIONS, 2011, 182 (06) : 1245 - 1252
  • [50] Finite-Temperature Dynamical Density Matrix Renormalization Group and the Drude Weight of Spin-1/2 Chains
    Karrasch, C.
    Bardarson, J. H.
    Moore, J. E.
    PHYSICAL REVIEW LETTERS, 2012, 108 (22)