UAV-Based in-band Integrated Access and Back for 5G Communications

被引:0
作者
Fouda, Abdurrahman [1 ]
Ibrahim, Ahmed S. [1 ]
Guvenc, Ismail [2 ]
Ghosh, Monisha [3 ]
机构
[1] Florida Int Univ, Dept Elect & Comp Engn, Miami, FL 33199 USA
[2] North Carolina State Univ, Dept Elect & Comp Engn, Raleigh, NC 27695 USA
[3] Univ Chicago, Dept Comp Sci, Chicago, IL 60637 USA
来源
2018 IEEE 88TH VEHICULAR TECHNOLOGY CONFERENCE (VTC-FALL) | 2018年
基金
美国国家科学基金会;
关键词
UAV; LAB; In-Band; FDD; Forward Link; Drone; Optimization; MISO; LZFBF; 3D Localization;
D O I
暂无
中图分类号
U [交通运输];
学科分类号
08 ; 0823 ;
摘要
We introduce the concept of using unmanned aerial vehicles (UAVs) as drone base stations for in-band Integrated Access and Backhaul (tB-IAB) scenarios for 5G networks. We first present a system model for forward link transmissions in an 113-LAB multi-tier drone cellular network. We then investigate the key challenges of this scenario and propose a framework that utilizes the flying capabilities of the UAV5 as the main degree of freedom to find the optimal precoder design for the backhaul links, user-base station association, UAV 3D hovering locations, and power allocations. We discuss how the proposed algorithm can be utilized to optimize the network performance in both large and small scales. Finally, we use an exhaustive search-based solution to demonstrate the performance gains that can be achieved from the presented algorithm in terms of the received signal to interference plus noise ratio (SINR) and overall network sum rate.
引用
收藏
页数:5
相关论文
共 50 条
[41]   UAV-based integrated multispectral-LiDAR imaging system and data processing [J].
Gu YanFeng ;
Jin XuDong ;
Xiang RunZi ;
Wang QingWang ;
Wang Chen ;
Yang ShengXiong .
SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2020, 63 (07) :1293-1301
[42]   Resource Management for 5G NR Integrated Access and Backhaul: A Semi-Centralized Approach [J].
Pagin, Matteo ;
Zugno, Tommaso ;
Polese, Michele ;
Zorzi, Michele .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (02) :753-767
[43]   Multi-agent based optimal UAV deployment for throughput maximization in 5 G communications [J].
Baghnoi, Farjam Mohammadi ;
Jamali, Jasem ;
Taghizadeh, Mehdi ;
Fatehi, Mohammah Hossein .
WIRELESS NETWORKS, 2024, 30 (04) :2285-2296
[44]   UAV-based integrated multispectral-LiDAR imaging system and data processing [J].
GU YanFeng ;
JIN XuDong ;
XIANG RunZi ;
WANG QingWang ;
WANG Chen ;
YANG ShengXiong .
Science China(Technological Sciences), 2020, (07) :1293-1301
[45]   Dynamic Connectivity Solutions: UAV Integration with 5G Networks [J].
Perez, Jesus ;
Diez, Luis ;
Choque, Johnny ;
Munoz, Luis ;
Velasco, Pedro ;
Soldado, Jose Ramon .
2024 23RD IFIP NETWORKING CONFERENCE, IFIP NETWORKING 2024, 2024, :589-591
[46]   On 5G support of cross-border UAV operations [J].
Tomaszewski, Lechoslaw ;
Kolakowski, Robert ;
Korzee, Pawel .
2020 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS (ICC WORKSHOPS), 2020,
[47]   UAV Trajectory Design and Power Optimization for Terahertz Band-Integrated Sensing and Communications [J].
Gao, Ying ;
Xue, Hongmei ;
Zhang, Long ;
Sun, Enchang .
SENSORS, 2023, 23 (06)
[48]   THE FIRST UAV-BASED P- AND X-BAND INTERFEROMETRIC SAR SYSTEM [J].
Remy, Marco A. ;
de Macedo, Karlus A. C. ;
Moreira, Joao R. .
2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, :5041-5044
[49]   Sparse Code Multiple Access Assisted Resource Allocation for 5G V2X Communications [J].
Shi, Zhenjiang ;
Liu, Jiajia .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2022, 70 (10) :6661-6677
[50]   Performance optimization of UAV-based IoT communications using a novel constrained gravitational search algorithm [J].
Sepehr Ebrahimi Mood ;
Ming Ding ;
Zihuai Lin ;
Mohammad Masoud Javidi .
Neural Computing and Applications, 2021, 33 :15557-15568