Characterization of weak convergence for smoothed empirical and quantile processes under phi-mixing

被引:2
作者
Degenhardt, HJA
Puri, ML
Sun, S
vanZuijlen, MCA
机构
[1] CATHOLIC UNIV NIJMEGEN,DEPT MATH,NL-6525 ED NIJMEGEN,NETHERLANDS
[2] INDIANA UNIV,BLOOMINGTON,IN 47405
[3] TEXAS TECH UNIV,LUBBOCK,TX 78409
关键词
smoothed empirical processes; smoothed sample quantiles; weak convergence; phi-mixing;
D O I
10.1016/0378-3758(95)00133-6
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let {X(n), n greater than or equal to 1} be a sequence of phi-mixing random variables having a smooth common distribution function F. The smoothed empirical distribution function is obtained by integrating a kernel type density estimator. In this paper we provide necessary and sufficient conditions for the central limit theorem to hold for smoothed empirical distribution functions and smoothed sample quantiles. Also, necessary and sufficient conditions are given for weak convergence of the smoothed empirical process and the smoothed uniform quantile process.
引用
收藏
页码:285 / 295
页数:11
相关论文
共 11 条
[1]  
Billingsley P, 1968, CONVERGE PROBAB MEAS
[2]  
Falk M., 1983, STAT NEERL, V37, P73, DOI [DOI 10.1111/J.1467-9574.1983.TB00802.X, 10.1111/j.1467-9574.1983.tb00802.x]
[3]  
FERNHOLZ LT, 1991, SCAND J STAT, V18, P255
[4]   ASYMPTOTIC PROPERTIES OF PERTURBED EMPIRICAL DISTRIBUTION-FUNCTIONS EVALUATED AT A RANDOM POINT [J].
LEA, CD ;
PURI, ML .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1988, 19 (02) :201-215
[5]  
Nadaraya EA., 1964, THEOR PROBAB APPL, V9, P497, DOI [10.1137/1109069, DOI 10.1137/1109069]
[6]  
PURI ML, 1986, J MULTIVARIATE ANAL, V16, P273
[7]   NECESSARY AND SUFFICIENT CONDITIONS FOR THE ASYMPTOTIC NORMALITY OF PERTURBED SAMPLE QUANTILES [J].
RALESCU, SS ;
SUN, S .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1993, 35 (01) :55-64
[8]  
Shorack GR., 1986, Empirical processes with applications to statistics
[9]  
SUN S, 1995, THEOR PROBAB APPL, V40, P143
[10]   FUNCTIONAL CENTRAL LIMIT THEOREMS FOR PROCESSES WITH POSITIVE DRIFT AND THEIR INVERSES [J].
VERVAAT, W .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1972, 23 (04) :245-&