Nonlinear Schrodinger equation with singular potential and initial data

被引:8
作者
Stojanovic, M [1 ]
机构
[1] Univ Novi Sad, Fac Sci & Math, Inst Math & Informat, Novi Sad 21000, Serbia Monteneg
关键词
nonlinear Schrodinger equation; singular potential and initial data; Colombeau vector-type spaces;
D O I
10.1016/j.na.2005.06.045
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a nonlinear Schrodinger equation with singular potential and initial data when the nonlinear term is an L-loc(infinity)-function which does not satisfy the Lipschitz condition. To avoid non-Lipshitz nonlinearity we use the cut-off method of regularization and as a framework for existence-uniqueness theorems we employ Colombeau vector space G(C1, W2,2) ([0, T), R-n), n <= 3. As an example we prove the existence-uniqueness result for nonlinear mapping f(u) = vertical bar u vertical bar(p-1)u, p >= 1, in the space G(C1, W2,2) ([0, T), R-n), n <= 3. (c) 2005 Published by Elsevier Ltd.
引用
收藏
页码:1460 / 1474
页数:15
相关论文
共 13 条
[1]  
AAMS R, 1975, SOBOLEV SPACES
[2]  
Biagioni H.A., 1990, LECT NOTES MATH, V1421
[3]   GENERALIZED SOLUTIONS TO THE KORTEWEG-DEVRIES AND THE REGULARIZED LONG-WAVE EQUATIONS [J].
BIAGIONI, HA ;
OBERGUGGENBERGER, M .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1992, 23 (04) :923-940
[4]  
Bourgain J., 1999, AMS C PUBLICATIONS, V46
[5]  
COLOMBEAU JF, 1983, ELEMENTARY INTRO NEW
[6]  
GROSSER M, 2000, GEOMETRIC GEN FUNCTI
[7]  
NAKAMURA S, 1993, COMMUNICATION OCT
[8]  
NEDELJKOV M, 2005, IN PRESS P ED ROY SO
[9]  
NEDELJKOV M, 1998, PITMAN RES NOTES MAT
[10]  
OBERGUGGENBERGE.M, 1992, PITMAN RES NOTES MAT, V259