A Modular Microfluidic Device via Multimaterial 3D Printing for Emulsion Generation

被引:84
作者
Ji, Qinglei [1 ,2 ]
Zhang, Jia Ming [2 ]
Liu, Ying [2 ]
Li, Xiying [2 ]
Lv, Pengyu [2 ]
Jin, Dongping [1 ]
Duan, Huiling [2 ,3 ,4 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, State Key Lab Mech & Control Mech Struct, 29 Yudao St, Nanjing 210016, Jiangsu, Peoples R China
[2] Peking Univ, State Key Lab Turbulence & Complex Syst, Dept Mech & Engn Sci, BIC ESAT,Coll Engn, Beijing 100871, Peoples R China
[3] Peking Univ, CAPT, HEDPS, Beijing 100871, Peoples R China
[4] Peking Univ, IFSA Collaborat Innovat Ctr MoE, Beijing 100871, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
ON-A-CHIP; DROPLET GENERATION; FLOW; REACTIONWARE; PARTICLES; FUTURE; LAB;
D O I
10.1038/s41598-018-22756-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
3D-printing (3DP) technology has been developing rapidly. However, limited studies on the contribution of 3DP technology, especially multimaterial 3DP technology, to droplet-microfluidics have been reported. In this paper, multimaterial 3D-printed devices for the pneumatic control of emulsion generation have been reported. A 3D coaxial flexible channel with other rigid structures has been designed and printed monolithically. Numerical and experimental studies have demonstrated that this flexible channel can be excited by the air pressure and then deform in a controllable way, which can provide the active control of droplet generation. Furthermore, a novel modular microfluidic device for double emulsion generation has been designed and fabricated, which consists of three modules: function module, T-junction module, and co-flow module. The function module can be replaced by (1) Single-inlet module, (2) Pneumatic Control Unit (PCU) module and (3) Dual-inlet module. Different modules can be easily assembled for different double emulsion production. By using the PCU module, double emulsions with different number of inner droplets have been successfully produced without complicated operation of flow rates of different phases. By using single and dual inlet module, various double emulsions with different number of encapsulated droplets or encapsulated droplets with different compositions have been successfully produced, respectively.
引用
收藏
页数:11
相关论文
共 60 条
[1]   Photoreactive coating for high-contrast spatial patterning of microfluidic device wettability [J].
Abate, Adam R. ;
Krummel, Amber T. ;
Lee, Daeyeon ;
Marquez, Manuel ;
Holtze, Christian ;
Weitz, David A. .
LAB ON A CHIP, 2008, 8 (12) :2157-2160
[2]   A 3D Printed Fluidic Device that Enables Integrated Features [J].
Anderson, Kari B. ;
Lockwood, Sarah Y. ;
Martin, R. Scott ;
Spence, Dana M. .
ANALYTICAL CHEMISTRY, 2013, 85 (12) :5622-5626
[3]   Formation of dispersions using "flow focusing" in microchannels [J].
Anna, SL ;
Bontoux, N ;
Stone, HA .
APPLIED PHYSICS LETTERS, 2003, 82 (03) :364-366
[4]   3D-Printed Microfluidics [J].
Au, Anthony K. ;
Huynh, Wilson ;
Horowitz, Lisa F. ;
Folch, Albert .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (12) :3862-3881
[5]   3D-printed microfluidic automation [J].
Au, Anthony K. ;
Bhattacharjee, Nirveek ;
Horowitz, Lisa F. ;
Chang, Tim C. ;
Folch, Albert .
LAB ON A CHIP, 2015, 15 (08) :1934-1941
[6]   Stable modification of PDMS surface properties by plasma polymerization: Application to the formation of double emulsions in microfluidic systems [J].
Barbier, Valessa ;
Tatoulian, Michael ;
Li, Hong ;
Arefi-Khonsari, Farzaneh ;
Ajdari, Armand ;
Tabeling, Patrick .
LANGMUIR, 2006, 22 (12) :5230-5232
[7]   Hydrophilic PDMS microchannels for high-throughput formation of oil-in-water microdroplets and water-in-oil-in-water double emulsions [J].
Bauer, Wolfgang-Andreas C. ;
Fischlechner, Martin ;
Abell, Chris ;
Huck, Wilhelm T. S. .
LAB ON A CHIP, 2010, 10 (14) :1814-1819
[8]   The pumping lid: investigating multi-material 3D printing for equipment-free, programmable generation of positive and negative pressures for microfluidic applications [J].
Begolo, Stefano ;
Zhukov, Dmitriy V. ;
Selck, David A. ;
Li, Liang ;
Ismagilov, Rustem F. .
LAB ON A CHIP, 2014, 14 (24) :4616-4628
[9]   The upcoming 3D-printing revolution in microfluidics [J].
Bhattacharjee, Nirveek ;
Urrios, Arturo ;
Kanga, Shawn ;
Folch, Albert .
LAB ON A CHIP, 2016, 16 (10) :1720-1742
[10]   A microfluidic droplet generator based on a piezoelectric actuator [J].
Bransky, Avishay ;
Korin, Natanel ;
Khoury, Maria ;
Levenberg, Shulamit .
LAB ON A CHIP, 2009, 9 (04) :516-520