A Legendre-based computational method for solving a class of Ito stochastic delay differential equations

被引:7
作者
Ernst, Philip A. [1 ]
Soleymani, Fazlollah [2 ]
机构
[1] Rice Univ, Dept Stat, Houston, TX 77005 USA
[2] IASBS, Dept Math, Zanjan 4513766731, Iran
基金
美国国家科学基金会;
关键词
Legendre collocation method; Stochastic delay differential equations; Strong solution; Lamperti transformation; Wiener process;
D O I
10.1007/s11075-018-0526-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper provides a numerical method for solving a class of Ito stochastic delay differential equations (SDDEs). The method's novelty is its use of the spectral collocation approach using Legendre polynomials for solving SDDEs. We prove that the method is strongly convergent in L-2 and proceed to demonstrate its computational efficiency and superior accuracy.
引用
收藏
页码:1267 / 1282
页数:16
相关论文
共 34 条
[1]   Higher order derivative-free iterative methods with and without memory for systems of nonlinear equations [J].
Ahmad, F. ;
Soleymani, F. ;
Haghani, F. Khaksar ;
Serra-Capizzano, S. .
APPLIED MATHEMATICS AND COMPUTATION, 2017, 314 :199-211
[2]  
[Anonymous], 1990, COURSE MODERN ANAL
[3]  
[Anonymous], PREPRINT
[4]  
[Anonymous], COMPLEX TIME DELAY S
[5]  
[Anonymous], LECT NOTES
[6]  
[Anonymous], 2014, MATH VERS 10 0
[7]  
[Anonymous], J INEQUAL PURE APPL
[8]   A delayed Black and Scholes formula [J].
Arriojas, Mercedes ;
Hu, Yaozhong ;
Mohammed, Salah-Eldin ;
Pap, Gyula .
STOCHASTIC ANALYSIS AND APPLICATIONS, 2007, 25 (02) :471-492
[9]  
Asgari M, 2014, B MATH SOC SCI MATH, V57, P3
[10]  
Baker C. T. H., 2000, LMS Journal of Computation and Mathematics, V3