Premixed flame response to equivalence ratio fluctuations: Comparison between reduced order modeling and detailed computations

被引:44
作者
Hemchandra, Santosh [1 ]
机构
[1] Rhein Westfal TH Aachen, Inst Aerodynam, D-52062 Aachen, Germany
关键词
Combustion instability; Describing function; Heat release response; Equivalence ratio; Partially premixed; Level-set; THERMOACOUSTIC INSTABILITY; COMBUSTION INSTABILITY; NONLINEAR RESPONSE; BURNING VELOCITY; OSCILLATIONS; DYNAMICS; MECHANISM;
D O I
10.1016/j.combustflame.2012.08.003
中图分类号
O414.1 [热力学];
学科分类号
摘要
Combustion instability events in lean premixed combustion systems can cause spatio-temporal variations in unburnt mixture fuel/air ratio. This provides a driving mechanism for heat-release oscillations when they interact with the flame. Several Reduced Order Modelling (ROM) approaches to predict the characteristics of these oscillations have been developed in the past. The present paper compares results for flame describing function characteristics determined from a ROM approach based on the level-set method, with corresponding results from detailed, fully compressible reacting flow computations for the same two dimensional slot flame configuration. The comparison between these results is seen to be sensitive to small geometric differences in the shape of the nominally steady flame used in the two computations. When the results are corrected to account for these differences, describing function magnitudes are well predicted for frequencies lesser than and greater than a lower and upper cutoff respectively due to amplification of flame surface wrinkling by the convective Darrieus-Landau (DL) instability. However, good agreement in describing function phase predictions is seen as the ROM captures the transit time of wrinkles through the flame correctly. Also, good agreement is seen for both magnitude and phase of the flame response, for large forcing amplitudes, at frequencies where the DL instability has a minimal influence. Thus, the present ROM can predict flame response as long as the DL instability, caused by gas expansion at the flame front, does not significantly alter flame front perturbation amplitudes as they traverse the flame. (C) 2012 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
引用
收藏
页码:3530 / 3543
页数:14
相关论文
共 59 条
[51]   The numerical approximation of a delta function with application to level set methods [J].
Smereka, P .
JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 211 (01) :77-90
[52]  
Stow S. R., 2004, ASME TURB EXP
[53]   Improved boundary conditions for viscous, reacting, compressible flows [J].
Sutherland, JC ;
Kennedy, CA .
JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 191 (02) :502-524
[54]   Experimental Study of the Darrieus-Landau instability on an inverted-'V' flame, and measurement of the Markstein number [J].
Truffaut, JM ;
Searby, G .
COMBUSTION SCIENCE AND TECHNOLOGY, 1999, 149 (1-6) :35-52
[55]  
Vagelopoulos CM, 1998, TWENTY-SEVENTH SYMPOSIUM (INTERNATIONAL) ON COMBUSTION, VOLS 1 AND 2, P513
[56]   MEASUREMENT OF FLAME TEMPERATURE AND ADIABATIC BURNING VELOCITY OF METHANE/AIR MIXTURES [J].
VANMAAREN, A ;
THUNG, DS ;
DEGOEY, LPH .
COMBUSTION SCIENCE AND TECHNOLOGY, 1994, 96 (4-6) :327-344
[57]   Mechanism of combustion instability in a lean premixed dump combustor [J].
Venkataraman, KK ;
Preston, LH ;
Simons, DW ;
Lee, BJ ;
Lee, JG ;
Santavicca, DA .
JOURNAL OF PROPULSION AND POWER, 1999, 15 (06) :909-918
[58]  
Veyssiere B., 2009, COMBUSTION PHENOMENA, P91
[59]  
[No title captured]