Transport of Anthocyanins and other Flavonoids by the Arabidopsis ATP-Binding Cassette Transporter AtABCC2

被引:96
作者
Behrens, Claire E. [1 ]
Smith, Kaila E. [1 ]
Iancu, Cristina V. [2 ,3 ]
Choe, Jun-yong [2 ,3 ]
Dean, John V. [1 ]
机构
[1] Depaul Univ, Dept Biol Sci, 2325 N Clifton Ave, Chicago, IL 60614 USA
[2] Rosalind Franklin Univ Med & Sci, Dept Biochem & Mol Biol, 3333 Green Bay Rd, N Chicago, IL 60064 USA
[3] East Carolina Univ, East Carolina Diabet & Obes Inst, Greenville, NC 27834 USA
关键词
MEDIATES VACUOLAR SEQUESTRATION; SITE-DIRECTED MUTAGENESIS; ABC TRANSPORTER; GLUTATHIONE; PROTEIN; PYROPHOSPHATASE; BIOSYNTHESIS; AUXIN; GENE; COTRANSPORT;
D O I
10.1038/s41598-018-37504-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Flavonoids have important developmental, physiological, and ecological roles in plants and are primarily stored in the large central vacuole. Here we show that both an ATP-binding cassette (ABC) transporter(s) and an H+- antiporter(s) are involved in the uptake of cyanidin 3-O-glucoside (C3G) by Arabidopsis vacuolar membrane-enriched vesicles. We also demonstrate that vesicles isolated from yeast expressing the ABC protein AtABCC2 are capable of MgATP-dependent uptake of C3G and other anthocyanins. The uptake of C3G by AtABCC2 depended on the co-transport of glutathione (GSH). C3G was not altered during transport and a GSH conjugate was not formed. Vesicles from yeast expressing AtABCC2 also transported flavone and flavonol glucosides. We performed ligand docking studies to a homology model of AtABCC2 and probed the putative binding sites of C3G and GSH through site-directed mutagenesis and functional studies. These studies identified residues important for substrate recognition and transport activity in AtABCC2, and suggest that C3G and GSH bind closely, mutually enhancing each other's binding. In conclusion, we suggest that AtABCC2 along with possibly other ABCC proteins are involved in the vacuolar transport of anthocyanins and other flavonoids in the vegetative tissue of Arabidopsis.
引用
收藏
页数:15
相关论文
共 71 条
[1]   Alternate energy-dependent pathways for the vacuolar uptake of glucose and glutathione conjugates [J].
Bartholomew, DM ;
Van Dyk, DE ;
Lau, SMC ;
O'Keefe, DP ;
Rea, PA ;
Viitanen, PV .
PLANT PHYSIOLOGY, 2002, 130 (03) :1562-1572
[2]   Interactions among PIN-FORMED and P-glycoprotein auxin transporters in Arabidopsis [J].
Blakeslee, Joshua J. ;
Bandyopadhyay, Anindita ;
Lee, Ok Ran ;
Mravec, Jozef ;
Titapiwatanakun, Boosaree ;
Sauer, Michael ;
Makam, Srinivas N. ;
Cheng, Yan ;
Bouchard, Rodolphe ;
Adamec, Jiri ;
Geisler, Markus ;
Nagashima, Akitomo ;
Sakai, Tatsuya ;
Martinoia, Enrico ;
Friml, Jiri ;
Peer, Wendy Ann ;
Murphy, Angus S. .
PLANT CELL, 2007, 19 (01) :131-147
[3]   The structure of the major anthocyanin in Arabidopsis thaliana [J].
Bloor, SJ ;
Abrahams, S .
PHYTOCHEMISTRY, 2002, 59 (03) :343-346
[4]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[5]  
Braman J, 1996, Methods Mol Biol, V57, P31
[6]   Vacuolar Transport of Abscisic Acid Glucosyl Ester Is Mediated by ATP-Binding Cassette and Proton-Antiport Mechanisms in Arabidopsis1[W][OPEN] [J].
Burla, Bo ;
Pfrunder, Stefanie ;
Nagy, Reka ;
Francisco, Rita Maria ;
Lee, Youngsook ;
Martinoia, Enrico .
PLANT PHYSIOLOGY, 2013, 163 (03) :1446-1458
[7]   Dietary phenolics: chemistry, bioavailability and effects on health [J].
Crozier, Alan ;
Jaganath, Indu B. ;
Clifford, Michael N. .
NATURAL PRODUCT REPORTS, 2009, 26 (08) :1001-1043
[8]   The TRANSPARENT TESTA12 gene of Arabidopsis encodes a multidrug secondary transporter-like protein required for flavonoid sequestration in vacuoles of the seed coat endothelium [J].
Debeaujon, I ;
Peeters, AJM ;
Léon-Kloosterziel, KM ;
Koornneef, M .
PLANT CELL, 2001, 13 (04) :853-871
[9]   Substrate recognition and transport by multidrug resistance protein 1 (ABCC1) [J].
Deeley, RG ;
Cole, SPC .
FEBS LETTERS, 2006, 580 (04) :1103-1111
[10]   INHIBITORY EFFECT OF MODIFIED BAFILOMYCINS AND CONCANAMYCINS ON P-TYPE AND V-TYPE ADENOSINE-TRIPHOSPHATASES [J].
DROSE, S ;
BINDSEIL, KU ;
BOWMAN, EJ ;
SIEBERS, A ;
ZEECK, A ;
ALTENDORF, K .
BIOCHEMISTRY, 1993, 32 (15) :3902-3906