Hyperspectral and multispectral data fusion using fast discrete curvelet transform for urban surface material characterization

被引:4
作者
Rao, Jillela Malleswara [1 ]
Siddiqui, Asfa [2 ]
Maithani, Sandeep [2 ]
Kumar, Pramod [2 ]
机构
[1] Adv Data Proc Res Inst, Hyderabad, Telangana, India
[2] Indian Space Res Org, Urban & Reg Studies Dept, Indian Inst Remote Sensing, Dehra Dun, Uttarakhand, India
关键词
Hyperspectral data; multispectral image; endmembers; fractional maps; image fusion; curvelets; VERTEX COMPONENT ANALYSIS; ENDMEMBER EXTRACTION; ALGORITHM; IMPLEMENTATION; ENHANCEMENT; SHAPE;
D O I
10.1080/10106049.2020.1818855
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The objective of the present study is to analyze the quality of hyperspectral data fusion using low spatial hyperspectral (LSH) Airborne Visible InfraRed Imaging Spectrometer-Next Generation (AVIRIS-NG) 8 m data and high spatial multispectral (HSM) WorldView-3 image at 1.24 m remote sensing images with spectral unmixing technique. The resultant HSH data shows new prospects for urban surface material characterization with spectrally distinct classes. The spatial resolution of LSH is enhanced by injecting the high-frequency details from the corresponding HSM bands in fast discrete curvelet transform domain. The image fusion-based products' quality has been analyzed by endmembers extraction and fractional maps generated using Piecewise Convex Multiple-Model Endmember Detection (PCOMMEND) method. Experimental results showed that the fusion has improved the spatial as well as spectral separability to extract the endmembers, particularly for the urban surface materials like the combination of water and asphalt, and bare soil and roof tiles.
引用
收藏
页码:2018 / 2030
页数:13
相关论文
共 45 条
  • [1] Real-Time Implementation of the Vertex Component Analysis Algorithm on GPUs
    Barberis, A.
    Danese, G.
    Leporati, F.
    Plaza, A.
    Torti, E.
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2013, 10 (02) : 251 - 255
  • [2] Bieniarz J, 2014, ISPRS INT ARCH PHOTO, VXXXVIII-4, pW19
  • [3] Boardman J.W., 1995, JPL PUBLICATION, P95
  • [4] Boardman JosephW., 1998, P 7 ANN JPL AIRBORNE, P55
  • [5] Fast discrete curvelet transforms
    Candes, Emmanuel
    Demanet, Laurent
    Donoho, David
    Ying, Lexing
    [J]. MULTISCALE MODELING & SIMULATION, 2006, 5 (03) : 861 - 899
  • [6] Merging hyperspectral and panchromatic image data: qualitative and quantitative analysis
    Cetin, Mufit
    Musaoglu, Nebiye
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2009, 30 (07) : 1779 - 1804
  • [7] Denoising of Hyperspectral Imagery Using Principal Component Analysis and Wavelet Shrinkage
    Chen, Guangyi
    Qian, Shen-En
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (03): : 973 - 980
  • [8] Dobhal S., 2008, THESIS ENSCHEDE
  • [9] End-member extraction for hyperspectral image analysis
    Du, Qian
    Raksuntorn, Nareenart
    Younan, Nicolas H.
    King, Roger L.
    [J]. APPLIED OPTICS, 2008, 47 (28) : F77 - F84
  • [10] Hierarchical Multiple Endmember Spectral Mixture Analysis (MESMA) of hyperspectral imagery for urban environments
    Franke, Jonas
    Roberts, Dar A.
    Halligan, Kerry
    Menz, Gunter
    [J]. REMOTE SENSING OF ENVIRONMENT, 2009, 113 (08) : 1712 - 1723