Swarm Optimization and Machine Learning for Android Malware Detection

被引:3
|
作者
Jhansi, K. Santosh [1 ,2 ]
Varma, P. Ravi Kiran [2 ]
Chakravarty, Sujata [3 ]
机构
[1] Centurion Univ Technol & Management, Paralakhemundi, Odisha, India
[2] Maharaj Vijayaram Gajapathi Raj Coll Engn, Vizianagaram, India
[3] Centurion Univ Technol & Management, Bhubaneswar, Odisha, India
来源
CMC-COMPUTERS MATERIALS & CONTINUA | 2022年 / 73卷 / 03期
关键词
Android malware; API calls; auto-encoders; ant lion optimization; cuckoo search optimization; firefly optimization; artificial neural networks; artificial neuronal classifier;
D O I
10.32604/cmc.2022.030878
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Malware Security Intelligence constitutes the analysis of applications and their associated metadata for possible security threats. Application Programming Interfaces (API) calls contain valuable information that can help with malware identification. The malware analysis with reduced feature space helps for the efficient identification of malware. The goal of this research is to find the most informative features of API calls to improve the android malware detection accuracy. Three swarm optimization methods, viz., Ant Lion Optimization (ALO), Cuckoo Search Optimization (CSO), and Firefly Optimization (FO) are applied to API calls using auto-encoders for identification of most influential features. The nature-inspired wrapper-based algorithms are evaluated using well-known Machine Learning (ML) classifiers such as Linear Regression (LR), Decision Tree (DT), Random Forest (RF), K-Nearest Neighbor (KNN)& SupportVector Machine (SVM). A hybrid Artificial Neuronal Classifier (ANC) is proposed for improving the classification of android malware. The experimental results yielded an accuracy of 98.87% with just seven features out of hundred API call features, i.e., a massive 93% of data optimization.
引用
收藏
页码:6327 / 6345
页数:19
相关论文
共 50 条
  • [1] An Android Malware Detection Leveraging Machine Learning
    Shatnawi, Ahmed S.
    Jaradat, Aya
    Yaseen, Tuqa Bani
    Taqieddin, Eyad
    Al-Ayyoub, Mahmoud
    Mustafa, Dheya
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2022, 2022
  • [2] Android Malware Detection Based on Machine Learning
    Wang, Qing-Fei
    Fang, Xiang
    2018 4TH ANNUAL INTERNATIONAL CONFERENCE ON NETWORK AND INFORMATION SYSTEMS FOR COMPUTERS (ICNISC 2018), 2018, : 434 - 436
  • [3] Android Malware Detection Using Machine Learning
    Droos, Ayat
    Al-Mahadeen, Awss
    Al-Harasis, Tasnim
    Al-Attar, Rama
    Ababneh, Mohammad
    2022 13TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION SYSTEMS (ICICS), 2022, : 36 - 41
  • [4] Application of Machine Learning Algorithms for Android Malware Detection
    Kakavand, Mohsen
    Dabbagh, Mohammad
    Dehghantanha, Ali
    2018 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND INTELLIGENT SYSTEMS (CIIS 2018), 2018, : 32 - 36
  • [5] Malware Detection Using Machine Learning Algorithms in Android
    Sri, Kovvuri Ramya
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON DATA SCIENCE, MACHINE LEARNING AND APPLICATIONS, VOL 1, ICDSMLA 2023, 2025, 1273 : 561 - 568
  • [6] Explainable Machine Learning for Malware Detection on Android Applications
    Palma, Catarina
    Ferreira, Artur
    Figueiredo, Mario
    INFORMATION, 2024, 15 (01)
  • [7] An Android Malware Detection System Based on Machine Learning
    Wen, Long
    Yu, Haiyang
    GREEN ENERGY AND SUSTAINABLE DEVELOPMENT I, 2017, 1864
  • [8] Android Malware Detection Using Machine Learning Technique
    Sabri, Nor ‘Afifah
    Khamis, Shakiroh
    Zainudin, Zanariah
    Lecture Notes on Data Engineering and Communications Technologies, 2024, 211 : 153 - 164
  • [9] Android Malware Detection Using Machine Learning: A Review
    Chowdhury, Naseef-Ur-Rahman
    Haque, Ahshanul
    Soliman, Hamdy
    Hossen, Mohammad Sahinur
    Fatima, Tanjim
    Ahmed, Imtiaz
    INTELLIGENT SYSTEMS AND APPLICATIONS, VOL 3, INTELLISYS 2023, 2024, 824 : 507 - 522
  • [10] Android Malware Detection through Machine Learning Techniques: A Review
    Abikoye, Oluwakemi Christiana
    Gyunka, Benjamin Aruwa
    Akande, Oluwatobi Noah
    INTERNATIONAL JOURNAL OF ONLINE AND BIOMEDICAL ENGINEERING, 2020, 16 (02) : 14 - 30