Detection of Visual Impairment From Retinal Fundus Images with Deep Learning

被引:0
|
作者
Olcer, Didem [1 ]
Erdas, Cagatay Berke [1 ]
机构
[1] Baskent Univ, Bilgisayar Muhendisligi, Muhendisl Fak, Ankara, Turkey
关键词
Visual impairment; Retina fundus; Deep learning; AlexNet; ResNet; Xception; Majority voting; Classification;
D O I
10.1109/TIPTEKNO56568.2022.9960232
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Nowadays, there are challenges in terms of eye care, including the treatment of visual impairment, quality of prevention and vision rehabilitation services. Since the eye is an organ that gives information about other diseases due to its structure, examinations have an important role. In this study, a solution is sought with AlexNet, ResNet and Xception architectures based on deep learning to predict the presence or absence of visual impairment from retinal fundus images. Thus, the possibility of vision loss of patients can be reduced by detecting people with visual impairments and by early diagnosis, and thus, significant increases in the patient's quality of life can be observed.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Detection of anaemia from retinal fundus images via deep learning
    Akinori Mitani
    Abigail Huang
    Subhashini Venugopalan
    Greg S. Corrado
    Lily Peng
    Dale R. Webster
    Naama Hammel
    Yun Liu
    Avinash V. Varadarajan
    Nature Biomedical Engineering, 2020, 4 : 18 - 27
  • [2] Detection of anaemia from retinal fundus images via deep learning
    Mitani, Akinori
    Huang, Abigail
    Venugopalan, Subhashini
    Corrado, Greg S.
    Peng, Lily
    Webster, Dale R.
    Hammel, Naama
    Liu, Yun
    Varadarajan, Avinash V.
    NATURE BIOMEDICAL ENGINEERING, 2020, 4 (01) : 18 - 27
  • [3] Author Correction: Detection of anaemia from retinal fundus images via deep learning
    Akinori Mitani
    Abigail Huang
    Subhashini Venugopalan
    Greg S. Corrado
    Lily Peng
    Dale R. Webster
    Naama Hammel
    Yun Liu
    Avinash V. Varadarajan
    Nature Biomedical Engineering, 2020, 4 : 242 - 242
  • [4] Detection of Hard Exudates in Retinal Fundus Images Using Deep Learning
    Benzamin, Avula
    Chakraborty, Chandan
    2018 JOINT 7TH INTERNATIONAL CONFERENCE ON INFORMATICS, ELECTRONICS & VISION (ICIEV) AND 2018 2ND INTERNATIONAL CONFERENCE ON IMAGING, VISION & PATTERN RECOGNITION (ICIVPR), 2018, : 465 - 469
  • [5] Visual Explanations for the Detection of Diabetic Retinopathy from Retinal Fundus Images
    Boreiko, Valentyn
    Ilanchezian, Indu
    Seckin, Murat
    Mueller, Ayhan Sarah
    Koch, Lisa M.
    Faber, Hanna
    Berens, Philipp
    Hein, Matthias
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT II, 2022, 13432 : 539 - 549
  • [6] Automatic detection of papilledema through fundus retinal images using deep learning
    Saba, Tanzila
    Akbar, Shahzad
    Kolivand, Hoshang
    Ali Bahaj, Saeed
    MICROSCOPY RESEARCH AND TECHNIQUE, 2021, 84 (12) : 3066 - 3077
  • [7] Prediction of visual impairment in retinitis pigmentosa using deep learning and multimodal fundus images
    Liu, Tin Yan Alvin
    Ling, Carlthan
    Hahn, Leo
    Jones, Craig K.
    Boon, Camiel J. F.
    Singh, Mandeep S.
    BRITISH JOURNAL OF OPHTHALMOLOGY, 2023, 107 (10) : 1484 - 1489
  • [8] Deep Learning for Predicting Refractive Error From Retinal Fundus Images
    Varadarajan, Avinash V.
    Poplin, Ryan
    Blumer, Katy
    Angermueller, Christof
    Ledsam, Joe
    Chopra, Reena
    Keane, Pearse A.
    Corrado, Greg S.
    Peng, Lily
    Webster, Dale R.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2018, 59 (07) : 2861 - 2868
  • [9] Deep learning for classification of laterality of retinal fundus images
    Diaz, L.
    Vistisen, D.
    Jorgensen, M. Eika
    Valerius, M.
    Hajari, J. Nouri
    Andersen, H. L.
    Byberg, S.
    DIABETOLOGIA, 2020, 63 (SUPPL 1) : S394 - S394
  • [10] A deep learning framework for the detection of Plus disease in retinal fundus images of preterm infants
    Ramachandran, Sivakumar
    Niyas, Punnakadan
    Vinekar, Anand
    John, Renu
    BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2021, 41 (02) : 362 - 375