On equilibrium solutions of diffusion equations with nonlinear boundary conditions

被引:15
作者
Consul, N
机构
[1] Dept. de Matemat. Aplicada I, Univ. Politecnica de Catalunya, 08028 Barcelona
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 1996年 / 47卷 / 02期
关键词
D O I
10.1007/BF00916824
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The existence or the nonexistence of nonconstant stable equilibrium solutions for a diffusion equation with nonlinear Neumann boundary conditions is studied. We prove the nonexistence of nonconstant stable equilibria when the nonlinearity has a small Lipschitz constant or a second derivative of constant sign or either when the domain is a ball. We construct an example of existence for a connected domain with several disconnected boundary components.
引用
收藏
页码:194 / 209
页数:16
相关论文
共 18 条
[1]   ESTIMATES NEAR THE BOUNDARY FOR SOLUTIONS OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS SATISFYING GENERAL BOUNDARY CONDITIONS .1. [J].
AGMON, S ;
DOUGLIS, A ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1959, 12 (04) :623-727
[3]   PARABOLIC EVOLUTION-EQUATIONS AND NONLINEAR BOUNDARY-CONDITIONS [J].
AMANN, H .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1988, 72 (02) :201-269
[5]  
[Anonymous], 1975, PURE APPL MATH
[6]   INSTABILITY RESULTS FOR REACTION DIFFUSION EQUATIONS WITH NEUMANN BOUNDARY-CONDITIONS [J].
CASTEN, RG ;
HOLLAND, CJ .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1978, 27 (02) :266-273
[7]  
CONSUL N, 1995, CR ACAD SCI I-MATH, V321, P299
[8]  
CONSUL N, 1993, EQUATIONS NONLINEAR
[9]  
CONSUL N, THESIS U POLITECNICA
[10]  
Dautray R., 1990, Mathematical Analysis and Numerical Methods for Science and technology