Whistler turbulence: Particle-in-cell simulations

被引:114
作者
Saito, Shinji [1 ]
Gary, S. Peter [1 ]
Li, Hui [1 ]
Narita, Yasuhito [2 ]
机构
[1] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[2] Tech Univ Carolo Wilhelmina Braunschweig, Inst Geophys & Extraterrestrial Phys, D-38106 Braunschweig, Germany
基金
美国国家航空航天局;
关键词
D O I
10.1063/1.2997339
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Two-dimensional electromagnetic particle-in-cell simulations in a magnetized, homogeneous, collisionless electron-proton plasma demonstrate the forward cascade of whistler turbulence. The simulations represent decaying turbulence, in which an initial, narrowband spectrum of fluctuations at wavenumbers kc/omega(e) similar or equal to 0.1 cascades toward increased damping at kc/omega(e) similar or equal to 1.0, where c/omega(e) is the electron inertial length. The turbulence displays magnetic energy spectra that are relatively steep functions of wavenumber and are anisotropic with more energy in directions relatively perpendicular to the background magnetic field B-o=(x) over capB(o) than at the same wavenumbers parallel to B-o. In the weak turbulence regime, the primary new results of the simulations are as follows: (1) Magnetic spectra of the cascading fluctuations become more anisotropic with increasing fluctuation energy; (2) the wavevector dependence of the three magnetic energy ratios, vertical bar delta B-j vertical bar(2)/vertical bar delta B vertical bar(2) with j = x, y, z, show good agreement with linear dispersion theory for whistler fluctuations; (3) the magnetic compressibility summed over the cascading modes satisfies 0.3 <= vertical bar delta B-x vertical bar(2)/vertical bar delta B vertical bar(2) <= 0.6; and (4) the turbulence heats electrons in directions both parallel and perpendicular to Bo, with stronger heating in the parallel direction. (C) 2008 American Institute of Physics. [DOI:10.1063/1.2997339]
引用
收藏
页数:8
相关论文
共 32 条
  • [1] Small-scale energy cascade of the solar wind turbulence
    Alexandrova, O.
    Carbone, V.
    Veltri, P.
    Sorriso-Valvo, L.
    [J]. ASTROPHYSICAL JOURNAL, 2008, 674 (02) : 1153 - 1157
  • [2] Measurement of the electric fluctuation spectrum of magnetohydrodynamic turbulence
    Bale, SD
    Kellogg, PJ
    Mozer, FS
    Horbury, TS
    Reme, H
    [J]. PHYSICAL REVIEW LETTERS, 2005, 94 (21)
  • [3] PROPERTIES OF WHISTLER MODE WAVES BETWEEN 0.3 AND 1.0 AU FROM HELIOS OBSERVATIONS
    BEINROTH, HJ
    NEUBAUER, FM
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1981, 86 (NA9): : 7755 - 7760
  • [4] Two-dimensional electron magnetohydrodynamic turbulence
    Biskamp, D
    Schwarz, E
    Drake, JF
    [J]. PHYSICAL REVIEW LETTERS, 1996, 76 (08) : 1264 - 1267
  • [5] Electron magnetohydrodynamic turbulence
    Biskamp, D
    Schwarz, E
    Zeiler, A
    Celani, A
    Drake, JF
    [J]. PHYSICS OF PLASMAS, 1999, 6 (03) : 751 - 758
  • [6] Buneman O., 1993, SIMULATION TECHNIQUE
  • [7] The anisotropy of electron magnetohydrodynamic turbulence
    Cho, J
    Lazarian, A
    [J]. ASTROPHYSICAL JOURNAL, 2004, 615 (01) : L41 - L44
  • [8] Whistlerization and anisotropy in two-dimensional electron magnetohydrodynamic turbulence
    Dastgeer, S
    Das, A
    Kaw, P
    Diamond, PH
    [J]. PHYSICS OF PLASMAS, 2000, 7 (02) : 571 - 579
  • [9] Anisotropic weak whistler wave turbulence in electron magnetohydrodynamics
    Galtier, S
    Bhattacharjee, A
    [J]. PHYSICS OF PLASMAS, 2003, 10 (08) : 3065 - 3076
  • [10] Gary S. P., 1993, Theory of Space Plasma Microinstabilities