Min-max Predictive Control of a Pilot Plant using a QP Approach

被引:0
|
作者
Gruber, J. K. [1 ]
Ramirez, D. R. [1 ]
Alamo, T. [1 ]
Bordons, C. [1 ]
Camacho, E. F. [1 ]
机构
[1] Univ Seville, Dept Ingn Sistemas & Automat, Escuela Super Ingenieros, Seville, Spain
关键词
D O I
10.1109/CDC.2008.4739059
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The practical implementation of Min-Max MPC (MMMPC) controllers is limited by the computational burden required to compute the control law. This problem can be circumvented by using approximate solutions or upper bounds of the worst possible case of the performance index. In a previous work, the authors presented a computationally efficient MMMPC control strategy in which a close approximation of the solution of the min-max problem is computed using a quadratic programming problem. In this paper, this approach is validated through its application to a pilot plant in which the temperature of a reactor is controlled. The behavior of the system and the controller are illustrated by means of experimental results.
引用
收藏
页码:3415 / 3420
页数:6
相关论文
共 50 条
  • [21] Min-Max and Predictive Control for the Management of Distribution in Supply Chains
    Alessandri, Angelo
    Gaggero, Mauro
    Tonelli, Flavio
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2011, 19 (05) : 1075 - 1089
  • [22] Application of min-max generalized predictive control to sintering processes
    Daewoo Electronics Co Ltd, Seoul, Korea, Republic of
    Control Eng Pract, 8 (999-1007):
  • [23] A decomposition algorithm for feedback min-max model predictive control
    de la Pena, D. Munoz
    Alamo, T.
    Bemporad, A.
    2005 44TH IEEE CONFERENCE ON DECISION AND CONTROL & EUROPEAN CONTROL CONFERENCE, VOLS 1-8, 2005, : 5126 - 5131
  • [24] An Efficient Maximization Algorithm With Implications in Min-Max Predictive Control
    Alamo, T.
    Munoz de la Pena, D.
    Camacho, E. F.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2008, 53 (09) : 2192 - 2197
  • [25] A decomposition algorithm for feedback min-max model predictive control
    Munoz de la Pena, D.
    Alamo, T.
    Bemporad, A.
    Camacho, E. F.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2006, 51 (10) : 1688 - 1692
  • [26] Comparison of Model Predictive Controller and Min-Max Approach for Aircraft Engine Fuel Control
    Montazeri-Gh, Morteza
    Rasti, Ali
    Imani, Amin
    2017 5TH INTERNATIONAL CONFERENCE ON CONTROL, INSTRUMENTATION, AND AUTOMATION (ICCIA), 2017, : 331 - 336
  • [27] Robustly stable feedback min-max model predictive control
    Kerrigan, EC
    Maciejowski, JM
    PROCEEDINGS OF THE 2003 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2003, : 3490 - 3495
  • [28] Applications of min-max generalized predictive control to sintering processes
    Kim, YH
    Kwon, WH
    AUTOMATION IN THE STEEL INDUSTRY: CURRENT PRACTICE AND FUTURE DEVELOPMENTS, 1998, : 27 - 32
  • [29] An application of min-max generalized predictive control to sintering processes
    Kim, YH
    Kwon, WH
    CONTROL ENGINEERING PRACTICE, 1998, 6 (08) : 999 - 1007
  • [30] Computationally efficient nonlinear Min-Max Model Predictive Control based on Volterra series models-Application to a pilot plant
    Gruber, J. K.
    Ramirez, D. R.
    Limon, D.
    Alamo, T.
    JOURNAL OF PROCESS CONTROL, 2013, 23 (04) : 543 - 560