Tuning a MAb glycan profile in cell culture: Supplementing N-acetylglucosamine to favour G0 glycans without compromising productivity and cell growth

被引:22
作者
Blondeel, Eric J. M. [1 ]
Braasch, Katrin [2 ]
McGill, Thomas [1 ]
Chang, David [3 ]
Engel, Christina [1 ]
Spearman, Maureen [2 ]
Butler, Michael [2 ]
Aucoin, Marc G. [1 ]
机构
[1] Univ Waterloo, Dept Chem Engn, Waterloo Inst Nanotechnol, Waterloo, ON N2L 3G1, Canada
[2] Univ Manitoba, Dept Microbiol, Winnipeg, MB R3T 2N2, Canada
[3] Chenomx Inc, Edmonton, AB T5J 4P6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
CHO cells; Protein quality; Glycosylation; Nucleotide sugars; N-acetylglucosamine GlcNAc; Glucosamine GlcN; METABOLIC FLUX ANALYSIS; GLYCOSYLATION GENE-EXPRESSION; D-GLUCOSAMINE; CHO-CELLS; PROTEIN GLYCOSYLATION; CANCER-CELLS; AMMONIUM; CARBOHYDRATE; PROLIFERATION; GLYCOPROTEINS;
D O I
10.1016/j.jbiotec.2015.09.014
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Glycosylation is a critical quality attribute of many therapeutic proteins, particularly monoclonal antibodies (MAbs). Nucleotide-sugar precursors supplemented to growth medium to affect the substrate supply chain of glycosylation has yielded promising but varied results for affecting glycosylation. Glucosamine (GlcN), a precursor for N-acetylglucosamine (GlcNAc), is a major component of mammalian glycans. The supplementation of GlcN to CHO cells stably-expressing a chimeric heavy-chain monoclonal antibody, EG2-hFc, reduces the complexity of glycans to favour G0 glycoforms, while also negatively impacting cell growth. Although several researchers have examined the supplementation of glucosamine, no clear explanation of its impact on cell growth has been forthcoming. In this work, the glucosamine metabolism is examined. We identified the acetylation of GlcN to produce GlcNAc to be the most likely cause for the negative impact on growth due to the depletion of intracellular acetyl-CoA pools in the cytosol. By supplementing GlcNAc in lieu of GlcN to CHO cells producing EG2-hFc, we achieve the same shift in glycan complexity with marginal impacts on the cell growth and protein production. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:105 / 112
页数:8
相关论文
共 58 条
[1]  
Agrawal Vishal, 2012, Methods Mol Biol, V911, P287, DOI 10.1007/978-1-61779-968-6_18
[2]  
[Anonymous], 2009, ESSENTIALS GLYCOBIOL
[3]   Metabolic control of recombinant protein N-glycan processing in NS0 and CHO cells [J].
Baker, KN ;
Rendall, MH ;
Hills, AE ;
Hoare, M ;
Freedman, RB ;
James, DC .
BIOTECHNOLOGY AND BIOENGINEERING, 2001, 73 (03) :188-202
[4]  
BEKESI JG, 1970, CANCER RES, V30, P2905
[5]  
Bigge J.C., 1995, ANAL BIOCH
[6]  
Bonarius HPJ, 1996, BIOTECHNOL BIOENG, V50, P299, DOI 10.1002/(SICI)1097-0290(19960505)50:3<299::AID-BIT9>3.0.CO
[7]  
2-B
[8]   Chinese hamster ovary cells can produce galactose-α-1,3-galactose antigens on proteins [J].
Bosques, Carlos J. ;
Collins, Brian E. ;
Meador, James W., III ;
Sarvaiya, Hetal ;
Murphy, Jennifer L. ;
DelloRusso, Guy ;
Bulik, Dorota A. ;
Hsu, I-Hsuan ;
Washburn, Nathaniel ;
Sipsey, Sandra F. ;
Myette, James R. ;
Raman, Rahul ;
Shriver, Zachary ;
Sasisekharan, Ram ;
Venkataraman, Ganesh .
NATURE BIOTECHNOLOGY, 2010, 28 (11) :1153-1156
[9]   Optimisation of the cellular metabolism of glycosylation for recombinant proteins produced by mammalian cell systems [J].
Butler, M. .
CYTOTECHNOLOGY, 2006, 50 (1-3) :57-76
[10]   GlycoBase and autoGU: tools for HPLC-based glycan analysis [J].
Campbell, Matthew P. ;
Royle, Louise ;
Radcliffe, Catherine M. ;
Dwek, Raymond A. ;
Rudd, Pauline M. .
BIOINFORMATICS, 2008, 24 (09) :1214-1216