A precise computation of stress intensity factor on the front of a convex planar crack

被引:12
作者
Ascenzi, O [1 ]
Pareschi, L [1 ]
Segala, F [1 ]
机构
[1] Univ Ferrara, Dipartimento Matemat, I-44100 Ferrara, Italy
关键词
mode I stress intensity factor; singular integrals; extrapolation methods; convex planar cracks;
D O I
10.1002/nme.425
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we consider a general integral expression for mode I stress intensity factor along the fronts of convex planar cracks. For this integral approximation, we develop a simple numerical quadrature formula on every convex set Omega which allows a precise estimation of the error. This permits the use of extrapolation techniques for the accurate computation of the integral. Copyright (C) 2002 John Wiley Sons, Ltd.
引用
收藏
页码:241 / 261
页数:21
相关论文
共 22 条
[1]  
Abramovitz M., 1972, HDB MATH FUNCTIONS F
[2]  
Aliabadi M., 1991, Numerical Fracture Mechanics, Solid Mechanics and Its Applications
[3]  
[Anonymous], 1975, METHODS NUMERICAL IN
[4]  
ASCENZI O, CONVERGENCE QUADRATU
[5]  
ASCENZI O, UNPUB
[6]   HANDBOOK SERIES NUMERICAL INTEGRATION - NUMERICAL QUADRATURE BY EXTRAPOLATION [J].
BULIRSCH, R ;
STOER, J .
NUMERISCHE MATHEMATIK, 1967, 9 (04) :271-&
[7]  
Daux C, 2000, INT J NUMER METH ENG, V48, P1741, DOI 10.1002/1097-0207(20000830)48:12<1741::AID-NME956>3.0.CO
[8]  
2-L
[9]   A WEIGHT FUNCTION TECHNIQUE FOR ESTIMATING STRESS INTENSITY FACTORS FOR CRACKS IN HIGH-PRESSURE VESSELS [J].
DESJARDINS, JL ;
BURNS, DJ ;
THOMPSON, JC .
JOURNAL OF PRESSURE VESSEL TECHNOLOGY-TRANSACTIONS OF THE ASME, 1991, 113 (01) :10-21
[10]   Domain integral formulation for stress intensity factor computation along curved three-dimensional interface cracks [J].
Gosz, M ;
Dolbow, J ;
Moran, B .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1998, 35 (15) :1763-1783