BIFURCATION OF NONLINEAR NORMAL MODES BY MEANS OF SYNGE'S STABILITY

被引:0
作者
Lee, Young S. [1 ]
Chen, Heng [1 ]
机构
[1] New Mexico State Univ, Dept Mech & Aerosp Engn, Las Cruces, NM 88003 USA
来源
PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE 2011, VOL 1, PTS A AND B: 23RD BIENNIAL CONFERENCE ON MECHANICAL VIBRATION AND NOISE | 2012年
关键词
TARGETED ENERGY TRANSFERS; COUPLED OSCILLATORS; RESONANCE CAPTURES; LINEAR-OSCILLATOR; PART II; EFFICIENCY; DYNAMICS; SYSTEM;
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
We study bifurcation of fundamental nonlinear normal modes (FNNMs) in 2-degree-of-freedom coupled oscillators by utilizing geometric mechanics approach based on Synges concept, which dictates orbital stability rather than Lyapunovs classical asymptotic stability. Use of harmonic balance method provides reasonably accurate approximation for NNMs over wide range of energy; and Floquet theory incorporated into Synges stability analysis predicts the respective bifurcation points as well as their types. Constructing NNMs in the frequency-energy domain, we seek applications to study of efficient targeted energy transfers.
引用
收藏
页码:647 / 653
页数:7
相关论文
共 13 条
[1]   A degenerate bifurcation structure in the dynamics of coupled oscillators with essential stiffness nonlinearities [J].
Gendelman, O ;
Manevitch, LI ;
Vakakis, AF ;
Bergman, L .
NONLINEAR DYNAMICS, 2003, 33 (01) :1-10
[2]   Bifurcations of nonlinear normal modes of linear oscillator with strongly nonlinear damped attachment [J].
Gendelman, OV .
NONLINEAR DYNAMICS, 2004, 37 (02) :115-128
[3]   Irreversible passive energy transfer in coupled oscillators with essential nonlinearity [J].
Kerschen, G ;
Lee, YS ;
Vakakis, AF ;
McFarland, DM ;
Bergman, LA .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2006, 66 (02) :648-679
[4]   Energy transfers in a system of two coupled oscillators with essential nonlinearity:: 1:1 resonance manifold and transient bridging orbits [J].
Kerschen, G ;
Vakakis, AF ;
Lee, YS ;
Mcfarland, DM ;
Kowtko, JJ ;
Bergman, LA .
NONLINEAR DYNAMICS, 2005, 42 (03) :283-303
[5]   A global-local approach to nonlinear system identification: A review [J].
Lee, Y. S. ;
Vakakis, A. F. ;
McFarland, D. M. ;
Bergman, L. A. .
STRUCTURAL CONTROL & HEALTH MONITORING, 2010, 17 (07) :742-760
[6]   Complicated dynamics of a linear oscillator with a light, essentially nonlinear attachment [J].
Lee, YS ;
Kerschen, G ;
Vakakis, AF ;
Panagopoulos, P ;
Bergman, L ;
McFarland, DM .
PHYSICA D-NONLINEAR PHENOMENA, 2005, 204 (1-2) :41-69
[7]   On the sensitivity of non-generic bifurcation of non-linear normal modes [J].
Pak, C. H. ;
Choi, Y. S. .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2007, 42 (07) :973-980
[8]   On the coupling of non-linear normal modes [J].
Pak, C. H. .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2006, 41 (05) :716-725
[9]   Synge's concept of stability applied to non-linear normal modes [J].
Pak, C. H. .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2006, 41 (05) :657-664
[10]   Nonlinear normal modes, Part II: Toward a practical computation using numerical continuation techniques [J].
Peeters, M. ;
Viguie, R. ;
Serandour, G. ;
Kerschen, G. ;
Golinval, J. -C. .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2009, 23 (01) :195-216