共 50 条
Low-temperature selective catalytic reduction of NO with NH3 using perovskite-type oxides as the novel catalysts
被引:55
作者:
Zhang, Runduo
[1
]
Luo, Na
[1
]
Yang, Wei
[1
]
Liu, Ning
[1
]
Chen, Biaohua
[1
]
机构:
[1] Beijing Univ Chem Technol, State Key Lab Chem Resource Engn, Beijing 100029, Peoples R China
基金:
中国国家自然科学基金;
关键词:
In situ DRIFTS;
Low temperature;
Manganese;
Perovskites;
SCR of NO with NH3;
TITANIA-SUPPORTED MANGANESE;
NITRIC-OXIDE;
SUPERIOR CATALYST;
SCR;
IDENTIFICATION;
ADSORPTION;
REACTIVITY;
AMMONIA;
TIO2;
C3H6;
D O I:
10.1016/j.molcata.2013.01.018
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
In order to investigate the activities of perovskite-type mixed oxides for selective catalytic reduction (SCR) of NO with NH3, a series of LaBO3 or La2BO4 perovskite-based catalysts with different B-site ions (B = Cu, Co, Mn, and Fe) was prepared by citrate complexation procedure and characterized by XRD, BET, TPD of NO + O-2 and NH3. It was found that Mn-based perovskite exhibited the best catalytic activity, yielding 78% NO conversion at 250 degrees C. The NH3 adsorption ability of the perovskites is the key factor for the SCR performance. In situ DRIFTS investigation was further carried out over LaMnO3 to explore the reaction mechanism. It is revealed that the SCR reaction starts with NH3 chemical adsorption, being thought as the rate-determining step. The mechanism essentially involves a Langmuir-Hinshelwood mechanism mainly depending on an interaction between NH4+ ionic species and nitrite species in the low-temperature range. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:86 / 93
页数:8
相关论文
共 50 条