Low-temperature selective catalytic reduction of NO with NH3 using perovskite-type oxides as the novel catalysts

被引:52
作者
Zhang, Runduo [1 ]
Luo, Na [1 ]
Yang, Wei [1 ]
Liu, Ning [1 ]
Chen, Biaohua [1 ]
机构
[1] Beijing Univ Chem Technol, State Key Lab Chem Resource Engn, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
In situ DRIFTS; Low temperature; Manganese; Perovskites; SCR of NO with NH3; TITANIA-SUPPORTED MANGANESE; NITRIC-OXIDE; SUPERIOR CATALYST; SCR; IDENTIFICATION; ADSORPTION; REACTIVITY; AMMONIA; TIO2; C3H6;
D O I
10.1016/j.molcata.2013.01.018
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In order to investigate the activities of perovskite-type mixed oxides for selective catalytic reduction (SCR) of NO with NH3, a series of LaBO3 or La2BO4 perovskite-based catalysts with different B-site ions (B = Cu, Co, Mn, and Fe) was prepared by citrate complexation procedure and characterized by XRD, BET, TPD of NO + O-2 and NH3. It was found that Mn-based perovskite exhibited the best catalytic activity, yielding 78% NO conversion at 250 degrees C. The NH3 adsorption ability of the perovskites is the key factor for the SCR performance. In situ DRIFTS investigation was further carried out over LaMnO3 to explore the reaction mechanism. It is revealed that the SCR reaction starts with NH3 chemical adsorption, being thought as the rate-determining step. The mechanism essentially involves a Langmuir-Hinshelwood mechanism mainly depending on an interaction between NH4+ ionic species and nitrite species in the low-temperature range. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:86 / 93
页数:8
相关论文
共 50 条
  • [21] Novel MnOx catalyst for low-temperature selective catalytic reduction of NOx with NH3
    Tang Xiaolong
    Hao Jiming
    Xu Wenguo
    Li Junhua
    CHINESE JOURNAL OF CATALYSIS, 2006, 27 (10) : 843 - 848
  • [22] Regeneration of field-spent activated carbon catalysts for low-temperature selective catalytic reduction of NOx with NH3
    Jeon, Jong-Ki
    Kim, Hyeonjoo
    Park, Young-Kwon
    Peden, Charles H. F.
    Kim, Do Heui
    CHEMICAL ENGINEERING JOURNAL, 2011, 174 (01) : 242 - 248
  • [23] MnOx/Ce0.6Zr0.4O2 Catalysts for Low-Temperature Selective Catalytic Reduction of NOx with NH3
    Shen, Boxiong
    Liu, Ting
    Yang, Xiaoyan
    Zhao, Ning
    ENVIRONMENTAL ENGINEERING SCIENCE, 2011, 28 (04) : 291 - 298
  • [24] In situ IR studies of Co and Ce doped Mn/TiO2 catalyst for low-temperature selective catalytic reduction of NO with NH3
    Qiu, Lu
    Pang, Dandan
    Zhang, Changliang
    Meng, Jiaojiao
    Zhu, Rongshu
    Ouyang, Feng
    APPLIED SURFACE SCIENCE, 2015, 357 : 189 - 196
  • [25] A novel catalytic activity of Ce-Zr-Mn-Ox mixed oxides for low temperature selective catalytic reduction of NO with NH3
    Zhang, Qiulin
    Song, Zhongxian
    Ning, Ping
    Gu, Junjie
    ENVIRONMENTAL ENGINEERING, PTS 1-4, 2014, 864-867 : 635 - 639
  • [26] Recent Advances in Mechanisms and Kinetics of Low-Temperature Selective Catalytic Reduction of NOx with NH3
    Li Yuntao
    Zhong Qin
    PROGRESS IN CHEMISTRY, 2009, 21 (06) : 1094 - 1100
  • [27] Ce-Mn mixed oxides supported on glass-fiber for low-temperature selective catalytic reduction of NO with NH3
    Li Le
    Diao Yongfa
    Liu Xin
    JOURNAL OF RARE EARTHS, 2014, 32 (05) : 409 - 415
  • [28] Fe promotion effect in Mn/USY for low-temperature selective catalytic reduction of NO with NH3
    Lin, Qi Chun
    Hao, Ji Ming
    Li, Jun Hua
    CHINESE CHEMICAL LETTERS, 2006, 17 (07) : 991 - 994
  • [29] Transition metal oxides supported on active carbons as low temperature catalysts for the selective catalytic reduction (SCR) of NO with NH3
    Pasel, J
    Kassner, P
    Montanari, B
    Gazzano, M
    Vaccari, A
    Makowski, W
    Lojewski, T
    Dziembaj, R
    Papp, H
    APPLIED CATALYSIS B-ENVIRONMENTAL, 1998, 18 (3-4) : 199 - 213
  • [30] Manganese oxide-based catalysts for low-temperature selective catalytic reduction of NOx with NH3: A review
    Liu, Chang
    Shi, Jian-Wen
    Gao, Chen
    Niu, Chunming
    APPLIED CATALYSIS A-GENERAL, 2016, 522 : 54 - 69