Numerical analysis of photovoltaic solar panel cooling by a flat plate closed-loop pulsating heat pipe

被引:74
作者
Alizadeh, Hossein [1 ]
Nazari, Mohammad Alhuyi [1 ]
Ghasempour, Roghayeh [1 ]
Shafii, Mohammad Behshad [2 ]
Akbarzadeh, Aliakbar [3 ]
机构
[1] Univ Tehran, Fac New Sci & Technol, Tehran, Iran
[2] Sharif Univ Technol, Mech Engn, Tehran, Iran
[3] RMIT Univ, Sch Engn Mech & Automot Engn, Melbourne, Vic, Australia
关键词
Pulsating heat pipe; PV cooling; Solar power generation; Numerical simulation; THERMAL PVT; WATER-FLOW; PERFORMANCE; TEMPERATURE; SYSTEMS; MODULE; CELL; VISUALIZATION; TECHNOLOGY; EMISSIONS;
D O I
10.1016/j.solener.2020.05.058
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Photovoltaic (PV) panels provide a suitable way for the direct conversion of solar energy into electricity. The electrical output and efficiency of PV modules are dependent on working temperature. The present study contributes to investigate the efficiency of utilizing a flat plate closed-loop pulsating heat pipe (CLPHP) to cool down a PV panel in both thermal and economic aspects. Accordingly, a numerical investigation is employed to obtain the surface temperature and electrical gain of the PV panel through four scenarios, including natural cooling without additional equipment, CLPHP-based passive cooling, CLPHP-based active cooling, and a conventional flat plate cooling methods. The efficiency of the cooling approaches is investigated in three different solar radiations and ambient temperatures according to the climatic condition of the considered location, Kerman, Iran. The improvement rate function is established to elaborate on the electrical gain efficiency of each scenario. Furthermore, each scenario is economically compared in terms of the payback period of the different cooling approaches. It is concluded that applying CLPHP-based passive, and active cooling approaches increase the improvement rate by 23% and 35% at the solar radiation of 1235 W/m(2), respectively. In addition, the results demonstrated that while the 4th scenario, conventional approach, induces higher improvement rate, it requires more operational cost, so increases the payback period by about 10% compared to the 3rd scenario. Accordingly, it is concluded that utilizing CLPHP for cooling the PV panel is an appropriate and cost-effective approach to increase the efficiency of the PV panel.
引用
收藏
页码:455 / 463
页数:9
相关论文
共 69 条
[1]   Energy and exergy analysis of hybrid micro-channel photovoltaic thermal module [J].
Agrawal, Sanjay ;
Tiwari, G. N. .
SOLAR ENERGY, 2011, 85 (02) :356-370
[2]   Solar power technology for electricity generation: A critical review [J].
Ahmadi, Mohammad Hossein ;
Ghazvini, Mahyar ;
Sadeghzadeh, Milad ;
Nazari, Mohammad Alhuyi ;
Kumar, Ravinder ;
Naeimi, Abbas ;
Ming, Tingzhen .
ENERGY SCIENCE & ENGINEERING, 2018, 6 (05) :340-361
[3]   Ground source heat pump carbon emissions and ground-source heat pump systems for heating and cooling of buildings: A review [J].
Ahmadi, Mohammad Hossein ;
Ahmadi, Mohammad Ali ;
Sadaghiani, Mirhadi S. ;
Ghazvini, Mahyar ;
Shahriar, Sadegh ;
Nazari, Mohammad Alhuyi .
ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, 2018, 37 (04) :1241-1265
[4]   Designing a solar powered Stirling heat engine based on multiple criteria: Maximized thermal efficiency and power [J].
Ahmadi, Mohammad Hossein ;
Sayyaadi, Hoseyn ;
Dehghani, Saeed ;
Hosseinzade, Hadi .
ENERGY CONVERSION AND MANAGEMENT, 2013, 75 :282-291
[5]   Heat pipe-based cooling systems for photovoltaic cells under concentrated solar radiation [J].
Akbarzadeh, A ;
Wadowski, T .
APPLIED THERMAL ENGINEERING, 1996, 16 (01) :81-87
[6]   Numerical simulation of PV cooling by using single turn pulsating heat pipe [J].
Alizadeh, Hossein ;
Ghasempour, Roghayeh ;
Shafii, Mohammad Behshad ;
Ahmadi, Mohammad Hossein ;
Yan, Wei-Mon ;
Nazari, Mohammad Alhuyi .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2018, 127 :203-208
[7]  
[Anonymous], 2003, HEAT TRANSFER HDB
[8]   Numerical investigation of the nanofluid effects on the heat extraction process of solar ponds in the transient step [J].
Aramesh, Mohamad ;
Pourfayaz, Fathollah ;
Kasaeian, Alibakhsh .
SOLAR ENERGY, 2017, 157 :869-879
[9]   A thermal model for photovoltaic panels under varying atmospheric conditions [J].
Armstrong, S. ;
Hurley, W. G. .
APPLIED THERMAL ENGINEERING, 2010, 30 (11-12) :1488-1495
[10]   Economic evaluation of commercial grid-connected photovoltaic systems in the Middle East based on experimental data: A case study in Iran [J].
Bakhshi-Jafarabadi, Reza ;
Sadeh, Javad ;
Dehghan, Mehran .
SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2020, 37