Spatiotemporal Dynamics in a Reaction-Diffusion Epidemic Model with a Time-Delay in Transmission

被引:14
|
作者
Cai, Yongli [1 ,2 ]
Yan, Shuling [3 ]
Wang, Hailing [4 ]
Lian, Xinze [1 ]
Wang, Weiming [1 ]
机构
[1] Wenzhou Univ, Coll Math & Informat Sci, Wenzhou 325035, Peoples R China
[2] Sun Yat Sen Univ, Sch Math & Computat Sci, Guangzhou 510275, Guangdong, Peoples R China
[3] Hunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R China
[4] Hubei Univ Nationalities, Dept Math, Enshi 445000, Peoples R China
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2015年 / 25卷 / 08期
基金
美国国家科学基金会;
关键词
Epidemic model; time-delay; bifurcation; pattern formation; NONLINEAR INCIDENCE RATES; PREDATOR-PREY SYSTEM; PATTERN-FORMATION; GLOBAL STABILITY; BIFURCATION; POPULATION; PLANKTON; SIR; INSTABILITIES; BEHAVIOR;
D O I
10.1142/S0218127415500996
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate the effects of time-delay and diffusion on the disease dynamics in an epidemic model analytically and numerically. We give the conditions of Hopf and Turing bifurcations in a spatial domain. From the results of mathematical analysis and numerical simulations, we find that for unequal diffusive coefficients, time-delay and diffusion may induce that Turing instability results in stationary Turing patterns, Hopf instability results in spiral wave patterns, and Hopf-Turing instability results in chaotic wave patterns. Our results well extend the findings of spatiotemporal dynamics in the delayed reaction-diffusion epidemic model, and show that time-delay has a strong impact on the pattern formation of the reaction-diffusion epidemic model.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Reaction-diffusion systems with stochastic time delay in kinetics
    Sen, Shrabani
    Ghosh, Pushpita
    Ray, Deb Shankar
    PHYSICAL REVIEW E, 2010, 81 (05):
  • [42] Dynamics of a reaction-diffusion SIRS model with general incidence rate in a heterogeneous environment
    Avila-Vales, Eric
    Perez, Angel G. C.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (01):
  • [43] Bifurcation and Spatiotemporal Patterns of SI Epidemic Model with Diffusion
    Ma, Yani
    Yuan, Hailong
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2024, 34 (01):
  • [44] Global dynamics of a delay reaction-diffusion model for viral infection with specific functional response
    Hattaf, Khalid
    Yousfi, Noura
    COMPUTATIONAL & APPLIED MATHEMATICS, 2015, 34 (03) : 807 - 818
  • [45] A REACTION-DIFFUSION MODEL FOR THE CONTROL OF CHOLERA EPIDEMIC
    Misra, A. K.
    Gupta, Alok
    JOURNAL OF BIOLOGICAL SYSTEMS, 2016, 24 (04) : 431 - 456
  • [46] ANALYSIS OF A REACTION-DIFFUSION SIR EPIDEMIC MODEL WITH NONCOMPLIANT BEHAVIOR
    Parkinson, Christian
    Wang, Weinan
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2023, 83 (05) : 1969 - 2002
  • [47] Spatiotemporal patterns in the Lengyel-Epstein reaction-diffusion model
    Dong, Yaying
    Zhang, Shunli
    Li, Shanbing
    ADVANCES IN DIFFERENCE EQUATIONS, 2016, : 1 - 15
  • [48] Dynamics for an SEIRS epidemic model with time delay on a scale-free network
    Yang, Peng
    Wang, Yuanshi
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 527
  • [49] GLOBAL DYNAMICS OF A REACTION-DIFFUSION SEIVQR EPIDEMIC MODEL IN ALMOST PERIODIC ENVIRONMENTS
    Xing, Yifan
    Li, Hong-Xu
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2025, 15 (02): : 762 - 785
  • [50] Global dynamics of a discretized SIRS epidemic model with time delay
    Sekiguchi, Masaki
    Ishiwata, Emiko
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 371 (01) : 195 - 202