Spatiotemporal Dynamics in a Reaction-Diffusion Epidemic Model with a Time-Delay in Transmission

被引:14
|
作者
Cai, Yongli [1 ,2 ]
Yan, Shuling [3 ]
Wang, Hailing [4 ]
Lian, Xinze [1 ]
Wang, Weiming [1 ]
机构
[1] Wenzhou Univ, Coll Math & Informat Sci, Wenzhou 325035, Peoples R China
[2] Sun Yat Sen Univ, Sch Math & Computat Sci, Guangzhou 510275, Guangdong, Peoples R China
[3] Hunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R China
[4] Hubei Univ Nationalities, Dept Math, Enshi 445000, Peoples R China
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2015年 / 25卷 / 08期
基金
美国国家科学基金会;
关键词
Epidemic model; time-delay; bifurcation; pattern formation; NONLINEAR INCIDENCE RATES; PREDATOR-PREY SYSTEM; PATTERN-FORMATION; GLOBAL STABILITY; BIFURCATION; POPULATION; PLANKTON; SIR; INSTABILITIES; BEHAVIOR;
D O I
10.1142/S0218127415500996
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate the effects of time-delay and diffusion on the disease dynamics in an epidemic model analytically and numerically. We give the conditions of Hopf and Turing bifurcations in a spatial domain. From the results of mathematical analysis and numerical simulations, we find that for unequal diffusive coefficients, time-delay and diffusion may induce that Turing instability results in stationary Turing patterns, Hopf instability results in spiral wave patterns, and Hopf-Turing instability results in chaotic wave patterns. Our results well extend the findings of spatiotemporal dynamics in the delayed reaction-diffusion epidemic model, and show that time-delay has a strong impact on the pattern formation of the reaction-diffusion epidemic model.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Spatiotemporal Patterns of a Reaction-Diffusion Substrate-Inhibition Seelig Model
    Yi, Fengqi
    Liu, Siyu
    Tuncer, Necibe
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2017, 29 (01) : 219 - 241
  • [32] SPATIAL DYNAMICS OF A NONLOCAL REACTION-DIFFUSION EPIDEMIC MODEL IN TIME-SPACE PERIODIC HABITAT
    Xin, Ming-Zhen
    Wang, Bin-Guo
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2023, 22 (08) : 2430 - 2465
  • [33] Dynamics of a reaction-diffusion epidemic model with general incidence and protection awareness for multi-transmission pathways
    Shen, Jingyun
    Wang, Shengfu
    Nie, Linfei
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (06):
  • [34] ASYMPTOTIC DYNAMICS OF REVERSIBLE CUBIC AUTOCATALYTIC REACTION-DIFFUSION SYSTEMS
    You, Yuncheng
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2011, 10 (05) : 1415 - 1445
  • [35] Numerical algorithm for a generalized form of Schnakenberg reaction-diffusion model with gene expression time delay
    Omrana, A. K.
    Zaky, M. A.
    Hendy, A. S.
    Pimenova, V. G.
    APPLIED NUMERICAL MATHEMATICS, 2023, 185 : 295 - 310
  • [36] Dynamic Analysis of a Reaction-Diffusion Rumor Propagation Model
    Zhao, Hongyong
    Zhu, Linhe
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2016, 26 (06):
  • [37] Dynamics in a reaction-diffusion epidemic model via environmental driven infection in heterogenous space
    Wang, Ning
    Zhang, Long
    Teng, Zhidong
    JOURNAL OF BIOLOGICAL DYNAMICS, 2022, 16 (01) : 373 - 396
  • [38] Effect of prey refuge on spatiotemporal dynamics of the reaction-diffusion system
    Guin, Lakshmi Narayan
    Mandal, Prashanta Kumar
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 68 (10) : 1325 - 1340
  • [39] Map dynamics versus dynamics of associated delay reaction-diffusion equations with a Neumann condition
    Yi, Taishan
    Zou, Xingfu
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2010, 466 (2122): : 2955 - 2973
  • [40] Spatiotemporal dynamics analysis and optimal control method for an SI reaction-diffusion propagation model
    Zhu, Linhe
    Huang, Xiaoyuan
    Liu, Ying
    Zhang, Zhengdi
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 493 (02)