Spatiotemporal Dynamics in a Reaction-Diffusion Epidemic Model with a Time-Delay in Transmission

被引:14
|
作者
Cai, Yongli [1 ,2 ]
Yan, Shuling [3 ]
Wang, Hailing [4 ]
Lian, Xinze [1 ]
Wang, Weiming [1 ]
机构
[1] Wenzhou Univ, Coll Math & Informat Sci, Wenzhou 325035, Peoples R China
[2] Sun Yat Sen Univ, Sch Math & Computat Sci, Guangzhou 510275, Guangdong, Peoples R China
[3] Hunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R China
[4] Hubei Univ Nationalities, Dept Math, Enshi 445000, Peoples R China
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2015年 / 25卷 / 08期
基金
美国国家科学基金会;
关键词
Epidemic model; time-delay; bifurcation; pattern formation; NONLINEAR INCIDENCE RATES; PREDATOR-PREY SYSTEM; PATTERN-FORMATION; GLOBAL STABILITY; BIFURCATION; POPULATION; PLANKTON; SIR; INSTABILITIES; BEHAVIOR;
D O I
10.1142/S0218127415500996
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate the effects of time-delay and diffusion on the disease dynamics in an epidemic model analytically and numerically. We give the conditions of Hopf and Turing bifurcations in a spatial domain. From the results of mathematical analysis and numerical simulations, we find that for unequal diffusive coefficients, time-delay and diffusion may induce that Turing instability results in stationary Turing patterns, Hopf instability results in spiral wave patterns, and Hopf-Turing instability results in chaotic wave patterns. Our results well extend the findings of spatiotemporal dynamics in the delayed reaction-diffusion epidemic model, and show that time-delay has a strong impact on the pattern formation of the reaction-diffusion epidemic model.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Turing patterns in a reaction-diffusion epidemic model
    Jia, Yanfei
    Cai, Yongli
    Shi, Hongbo
    Fu, Shengmao
    Wang, Weiming
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2018, 11 (02)
  • [2] Spatiotemporal dynamics of a general reaction-diffusion model with time delay and nonlocal effect
    Xu, Xiuyan
    Liu, Ming
    Xu, Xiaofeng
    ADVANCES IN CONTINUOUS AND DISCRETE MODELS, 2025, 2025 (01):
  • [3] Complex dynamics of a reaction-diffusion epidemic model
    Wang, Weiming
    Cai, Yongli
    Wu, Mingjiang
    Wang, Kaifa
    Li, Zhenqing
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (05) : 2240 - 2258
  • [4] Pattern dynamics of a spatial epidemic model with time delay
    Song, Li-Peng
    Zhang, Rong-Ping
    Feng, Li-Ping
    Shi, Qiong
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 292 : 390 - 399
  • [5] DYNAMICS OF AN SIS REACTION-DIFFUSION EPIDEMIC MODEL FOR DISEASE TRANSMISSION
    Huang, Wenzhang
    Han, Maoan
    Liu, Kaiyu
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2010, 7 (01) : 51 - 66
  • [6] The impact of media on the spatiotemporal pattern dynamics of a reaction-diffusion epidemic model
    Meng, Xin-You
    Zhang, Tao
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2020, 17 (04) : 4034 - 4047
  • [7] Dynamics of Fractional-Order Epidemic Models with General Nonlinear Incidence Rate and Time-Delay
    Kashkynbayev, Ardak
    Rihan, Fathalla A.
    MATHEMATICS, 2021, 9 (15)
  • [8] Analysis of spatiotemporal patterns in a single species reaction-diffusion model with spatiotemporal delay
    Yang, Gaoxiang
    Xu, Jian
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2015, 22 : 54 - 65
  • [9] Spatiotemporal dynamics in a reaction-diffusion toxic-phytoplankton-zooplankton model
    Rao, Feng
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2013,
  • [10] Bifurcation phenomena in a single-species reaction-diffusion model with spatiotemporal delay
    Yang, Gaoxiang
    Li, Xiaoyu
    AIMS MATHEMATICS, 2021, 6 (07): : 6687 - 6698