Quantitative analysis of the resolution and sensitivity of Kelvin probe force microscopy using carbon nanotube functionalized probes

被引:6
作者
Mao, Bin [1 ]
Tao, Quan [1 ]
Li, Guangyong [1 ]
机构
[1] Univ Pittsburgh, Dept Elect & Comp Engn, Pittsburgh, PA 15261 USA
基金
美国国家科学基金会;
关键词
Kelvin probe force microscopy; carbon nanotube functionalized probe; resolution; sensitivity; SURFACE; TIP;
D O I
10.1088/0957-0233/23/10/105404
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Carbon nanotube (CNT) functionalized probes are expected to offer better resolution in Kelvin probe force microscopy (KPFM) but are suspected of lower sensitivity because of the small area between the CNT end and the sample surface. This paper quantitatively analyzes the resolution and sensitivity of KPFM using CNT functionalized probes. First, point spread functions (PSFs) of CNT functionalized probes are derived for both amplitude-modulation and frequency-modulation detection in KPFM. Based on these PSFs, the resolution and sensitivity of KPFM using CNT functionalized probes are analyzed. The findings suggest that CNT functionalized probes offer better resolution and are sensitive enough under proper operational conditions. These findings provide practical guidance for designing and making CNT functionalized probes in KPFM applications.
引用
收藏
页数:13
相关论文
共 50 条
[21]   Unraveling nanoscale conduction and work function in a poly(3,4-ethylenedioxypyrrole)/carbon nanotube composite by Kelvin probe force microscopy and conducting atomic force microscopy [J].
Reddy, B. Narsimha ;
Deepa, Melepurath .
ELECTROCHIMICA ACTA, 2012, 70 :228-240
[22]   Local Voltage Drop in a Single Functionalized Graphene Sheet Characterized by Kelvin Probe Force Microscopy [J].
Yan, Liang ;
Punckt, Christian ;
Aksay, Ilhan A. ;
Mertin, Wolfgang ;
Bacher, Gerd .
NANO LETTERS, 2011, 11 (09) :3543-3549
[23]   Surface potential measurements of 2 x 1 reconstructed Si(001) using UHV Kelvin probe force microscopy [J].
Lee, Sangyeob .
SURFACE SCIENCE, 2015, 641 :16-22
[24]   Local Electrical Analysis of a Single Semiconductor Nanowire by Kelvin Probe Force Microscopy [J].
Vinaji, Sasa ;
Lochthofen, Andre ;
Mertin, Wolfgang ;
Regolin, Ingo ;
Gutsche, Christoph ;
Blekker, Kai ;
Prost, Werner ;
Tegude, Franz J. ;
Bacher, Gerd .
PHYSICS OF SEMICONDUCTORS, 2009, 1199 :329-+
[25]   Torsional Harmonic Kelvin Probe Force Microscopy for High-Sensitivity Mapping of Surface Potential [J].
Zhang, Hao ;
Gao, Haibo ;
Geng, Junyuan ;
Meng, Xianghe ;
Xie, Hui .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2022, 69 (02) :1654-1662
[26]   Multifrequency spectrum analysis using fully digital G Mode-Kelvin probe force microscopy [J].
Collins, Liam ;
Belianinov, Alex ;
Somnath, Suhas ;
Rodriguez, Brian J. ;
Balke, Nina ;
Kalinin, Sergei V. ;
Jesse, Stephen .
NANOTECHNOLOGY, 2016, 27 (10)
[27]   The stray capacitance effect in Kelvin probe force microscopy using FM, AM and heterodyne AM modes [J].
Ma, Zong Min ;
Kou, Lili ;
Naitoh, Yoshitaka ;
Li, Yan Jun ;
Sugawara, Yasuhiro .
NANOTECHNOLOGY, 2013, 24 (22)
[28]   Analysis of Dislocations in CdZnTe Epitaxial Film with Kelvin Probe and Conductive Atomic Force Microscopy [J].
Cao, Kun ;
Jie, Wanqi ;
Zha, Gangqiang ;
Dong, Jiangpeng ;
Hu, Ruiqi ;
Li, Yang .
JOURNAL OF ELECTRONIC MATERIALS, 2020, 49 (06) :3907-3912
[29]   Polarity analysis of GaN nanorods by photo-assisted Kelvin probe force microscopy [J].
Wei, Jiandong ;
Neumann, Richard ;
Wang, Xue ;
Li, Shunfeng ;
Fuendling, Soenke ;
Merzsch, Stephan ;
Al-Suleiman, Mohamed A. M. ;
Soekmen, Uensal ;
Wehmann, Hergo-H. ;
Waag, Andreas .
PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 8, NO 7-8, 2011, 8 (7-8) :2157-2159
[30]   Measurement and Visualization of Doping Profile in Silicon Using Kelvin Probe Force Microscopy (KPFM) [J].
Shin, Hyunjung ;
Lee, Bongki ;
Kim, Chanhyung ;
Park, Hongsik ;
Min, Dong-Ki ;
Jung, Juwhan ;
Hong, Seungbum ;
Kim, Sungdong .
ELECTRONIC MATERIALS LETTERS, 2005, 1 (02) :127-133