First-principles calculations of the lattice thermal conductivity of the lower mantle

被引:49
作者
Stackhouse, Stephen [1 ]
Stixrude, Lars [2 ]
Karki, Bijaya B. [3 ,4 ]
机构
[1] Univ Leeds, Sch Earth & Environm, Leeds LS2 9JT, W Yorkshire, England
[2] UCL, Dept Earth Sci, London WC1E 6BT, England
[3] Louisiana State Univ, Dept Geol & Geophys, Sch Elect Engn & Comp Sci, Baton Rouge, LA 70803 USA
[4] Louisiana State Univ, Ctr Computat & Technol, Baton Rouge, LA 70803 USA
基金
欧洲研究理事会; 美国国家科学基金会; 英国工程与自然科学研究理事会;
关键词
MgSiO3; perovskite; thermal conductivity; mantle dynamics; ELECTRON-PHONON INTERACTION; TOTAL-ENERGY CALCULATIONS; MGSIO3; PEROVSKITE; POST-PEROVSKITE; HEAT-FLUX; BOUNDARY-LAYER; MINERALS; PHASE; DIFFUSIVITY; MGO;
D O I
10.1016/j.epsl.2015.06.050
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The temperature variations on top of the core-mantle boundary are governed by the thermal conductivity of the minerals that comprise the overlying mantle. Estimates of the thermal conductivity of the most abundant phase, MgSiO3 perovskite, at core-mantle boundary conditions vary by a factor of ten. We performed ab initio simulations to determine the lattice thermal conductivity of MgSiO3 perovskite, finding a value of 6.8 +/- 0.9 W m(-1) K-1 at core-mantle boundary conditions (136 GPa and 4000 K), consistent with geophysical constraints for the thermal state at the base of the mantle. Thermal conductivity depends strongly on pressure, explaining the dynamical stability of super-plumes. The dependence on temperature and composition is weak in the deep mantle: our results exhibit saturation as the phonon mean free path approaches the interatomic spacing. Combining our results with seismic tomography, we find large lateral variations in the heat-flux from the core that have important implications for core dynamics. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:11 / 17
页数:7
相关论文
共 56 条
[1]   Variation of thermal conductivity and heat flux at the Earth's core mantle boundary [J].
Ammann, Michael W. ;
Walker, Andrew M. ;
Stackhouse, Stephen ;
Wookey, James ;
Forte, Alessandro M. ;
Brodholt, John P. ;
Dobson, David P. .
EARTH AND PLANETARY SCIENCE LETTERS, 2014, 390 :175-185
[2]   ROLE OF ELECTRON-PHONON INTERACTION AND PERIPHERAL PHONONS IN LATTICE THERMAL-CONDUCTIVITY OF DOPED SEMICONDUCTOR AT LOW-TEMPERATURES - APPLICATION TO PHOSPHORUS-DOPED GERMANIUM [J].
BOGHOSIAN, HH ;
DUBEY, KS .
PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1978, 88 (02) :417-427
[3]   Critical assessment of classical potentials for MgSiO3 perovskite with application to thermal conductivity calculations [J].
Chen, Ying ;
Chernatynskiy, Aleksandr ;
Brown, Daniel ;
Schelling, Patrick K. ;
Artacho, Emilio ;
Phillpot, Simon R. .
PHYSICS OF THE EARTH AND PLANETARY INTERIORS, 2012, 210 :75-89
[4]   Mantle regulation of core cooling: A geodynamo without core radioactivity? [J].
Davies, Geoffrey F. .
PHYSICS OF THE EARTH AND PLANETARY INTERIORS, 2007, 160 (3-4) :215-229
[5]   Thermal conductivity of MgO periclase at high pressure: Implications for the D" region [J].
de Koker, Nico .
EARTH AND PLANETARY SCIENCE LETTERS, 2010, 292 (3-4) :392-398
[6]   Ab initio Lattice Thermal Conductivity of MgSiO3 Perovskite as Found in Earth's Lower Mantle [J].
Dekura, Haruhiko ;
Tsuchiya, Taku ;
Tsuchiya, Jun .
PHYSICAL REVIEW LETTERS, 2013, 110 (02)
[7]   Effects of a realistic mantle thermal conductivity on the patterns of 3-D convection [J].
Dubuffet, F ;
Yuen, DA ;
Rabinowicz, M .
EARTH AND PLANETARY SCIENCE LETTERS, 1999, 171 (03) :401-409
[8]   Mantle Anchor Structure: An argument for bottom up tectonics [J].
Dziewonski, Adam M. ;
Lekic, Vedran ;
Romanowicz, Barbara A. .
EARTH AND PLANETARY SCIENCE LETTERS, 2010, 299 (1-2) :69-79
[9]   Phase transition and metallization of FeO at high pressures and temperatures [J].
Fischer, Rebecca A. ;
Campbell, Andrew J. ;
Lord, Oliver T. ;
Shofner, Gregory A. ;
Dera, Przemyslaw ;
Prakapenka, Vitali B. .
GEOPHYSICAL RESEARCH LETTERS, 2011, 38
[10]   ERROR-ESTIMATES ON AVERAGES OF CORRELATED DATA [J].
FLYVBJERG, H ;
PETERSEN, HG .
JOURNAL OF CHEMICAL PHYSICS, 1989, 91 (01) :461-466