Heat Kernel Coupled with Geometric Flow and Ricci Flow

被引:1
|
作者
Coulibaly-Pasquier, Kolehe A. [1 ,2 ]
机构
[1] Univ Lorraine, Inst Elie Cartan Lorraine, UMR 7502, Villers Les Nancy, France
[2] CNRS, Villers Les Nancy, France
来源
SEMINAIRE DE PROBABILITES L | 2019年 / 2252卷
关键词
INEQUALITIES; EQUATION;
D O I
10.1007/978-3-030-28535-7_11
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove on-diagonal upper bound for the minimal fundamental solution of the heat equation evolving under geometric flow. In the case of Ricci flow, with non-negative Ricci curvature and a condition on the growth of volume of ball for the initial manifold, we derive Gaussian bounds for the minimal fundamental solution of the heat equation, and then for the conjugate heat equation.
引用
收藏
页码:221 / 256
页数:36
相关论文
共 50 条