Influence of the Calcination and Carbonation Conditions on the CO2 Uptake of Synthetic Ca-Based CO2 Sorbents

被引:89
作者
Broda, Marcin [1 ]
Kierzkowska, Agnieszka M. [1 ]
Mueller, Christoph R. [1 ]
机构
[1] ETH, Lab Energy Sci & Engn, CH-8092 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
STEAM REACTIVATION; HIGHLY EFFICIENT; DIOXIDE CAPTURE; FLUIDIZED-BED; CALCIUM; TEMPERATURE; CYCLES; COMBUSTION; MECHANISM; ALUMINATE;
D O I
10.1021/es302757e
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this work we report the development of a Ca-based, Al2O3-stabilized sorbent using a sol-gel technique. The CO2 uptake of the synthetic materials as a function of carbonation and calcination temperature and CO2 partial pressure was critically assessed. In addition, performing the carbonation and calcination reactions in a gas-fluidized bed allowed the attrition characteristics of the new material to be investigated. After 30 cycles of calcination and carbonation conducted in a fluidized bed, the CO2 uptake of the best sorbent was 0.31 g CO2/g sorbent, which is 60% higher than that measured for Rheinkalk limestone. A detailed characterization of the morphology of the sol-gel derived material confirmed that the nanostructure of the synthetic material is responsible for its high, cyclic CO, uptake. The sol gel method ensured that Ca2+ and Al3+ were homogenously mixed (mostly in the form of the mixed oxide mayenite). The formation of a finely and homogeneously dispersed, high Tammann temperature support stabilized the nanostructured morphology over multiple reaction cycles, whereas limestone lost its initial nanostructured morphology rapidly due to its intrinsic lack of a support component.
引用
收藏
页码:10849 / 10856
页数:8
相关论文
共 34 条
[1]   Conversion limits in the reaction of CO2 with lime [J].
Abanades, JC ;
Alvarez, D .
ENERGY & FUELS, 2003, 17 (02) :308-315
[2]   Capture of CO2 from combustion gases in a fluidized bed of CaO [J].
Abanades, JC ;
Anthony, EJ ;
Lu, DY ;
Salvador, C ;
Alvarez, D .
AICHE JOURNAL, 2004, 50 (07) :1614-1622
[3]   Determination of the critical product layer thickness in the reaction of CaO with CO2 [J].
Alvarez, D ;
Abanades, JC .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2005, 44 (15) :5608-5615
[4]   Sorbent-Enhanced Methane Reforming over a Ni-Ca-Based, Bifunctional Catalyst Sorbent [J].
Broda, Marcin ;
Kierzkowska, Agnieszka M. ;
Baudouin, David ;
Imtiaz, Qasim ;
Coperet, Christophe ;
Mueller, Christoph R. .
ACS CATALYSIS, 2012, 2 (08) :1635-1646
[5]   Synthesis of Highly Efficient, Ca-Based, Al2O3-Stabilized, Carbon Gel-Templated CO2 Sorbents [J].
Broda, Marcin ;
Mueller, Christoph R. .
ADVANCED MATERIALS, 2012, 24 (22) :3059-3064
[6]   Application of the Sol-Gel Technique to Develop Synthetic Calcium-Based Sorbents with Excellent Carbon Dioxide Capture Characteristics [J].
Broda, Marcin ;
Kierzkowska, Agnieszka M. ;
Mueller, Christoph R. .
CHEMSUSCHEM, 2012, 5 (02) :411-418
[7]   Adsorbent Materials for Carbon Dioxide Capture from Large Anthropogenic Point Sources [J].
Choi, Sunho ;
Drese, Jeffrey H. ;
Jones, Christopher W. .
CHEMSUSCHEM, 2009, 2 (09) :796-854
[8]   The rate and extent of uptake of CO2 by a synthetic, CaO-containing sorbent [J].
Dennis, J. S. ;
Pacciani, R. .
CHEMICAL ENGINEERING SCIENCE, 2009, 64 (09) :2147-2157
[9]   The effects of repeated cycles of calcination and carbonation on a variety of different limestones, as measured in a hot fluidized bed of sand [J].
Fennell, Paul S. ;
Pacciani, Roberta ;
Dennis, John S. ;
Davidson, John F. ;
Hayhurst, Allan N. .
ENERGY & FUELS, 2007, 21 (04) :2072-2081
[10]   Highly Efficient CO2 Sorbents: Development of Synthetic, Calcium-Rich Dolomites [J].
Filitz, Rainer ;
Kierzkowska, Agnieszka M. ;
Broda, Marcin ;
Mueller, Christoph R. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2012, 46 (01) :559-565