Herbaceous perennial biomass production on frequently saturated marginal soils: Influence on N2O emissions and shallow groundwater

被引:4
作者
Rau, Benjamin M. [1 ]
Adler, Paul R. [1 ]
Dell, Curtis J. [1 ]
Saha, Debasish [2 ]
Kemanian, Armen R. [2 ]
机构
[1] USDA ARS, University Pk, PA 16802 USA
[2] Penn State Univ, Dept Plant Sci, University Pk, PA 16802 USA
关键词
Biomass; Switchgrass; Miscanthus; Marginal soils; N2O; Water quality; NITROUS-OXIDE EMISSIONS; SWITCHGRASS PRODUCTION; NONLINEAR RESPONSE; LAND-USE; MISCANTHUS; WATER; DENITRIFICATION; NITRIFICATION; FERTILIZER; QUALITY;
D O I
10.1016/j.biombioe.2019.01.023
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Warm season perennial grasses grown for biomass have been suggested as alternative cropping systems on marginal soils to increase farm profit, reduce nitrous oxide (N2O) emissions, and improve water quality. The objectives of this study were to determine: 1) how warm season perennial grasses, switchgrass (Panicum virgatum) and Miscanthus (Miscanthus x giganteus), compare to cool season grasses as streamside buffers on poorly drained marginal soils 2) if inorganic or organic nutrient additions improve biomass yield and affect environmental outcomes? 3) which soil variables influence N2O emissions in situ? We measured soil N2O emissions, soil solution nitrate (NO3-), ammonium (NH4+), O-2, moisture, and temperature, along with shallow groundwater NH4+, NO3-, and ortho-phosphate during two growing seasons (2012-2013). N2O emissions were similar across unfertilized warm season grasses and cool season grasses. However, when switchgrass was fertilized with ammonium sulfate or broiler manure, N2O emissions increased significantly. N2O emissions were weakly correlated with soil solution NO3- concentrations and water filled pore space. Shallow groundwater N was elevated under switchgrass fertilized with ammonium sulfate, broiler manure, and when grown with the legume (Desmodium canadense) when compared to unfertilized switchgrass, Miscanthus, and cool season grasses. In 2013 dry aboveground biomass production did not differ among switchgrass treatments which averaged 10 Mg ha. Biomass production was significantly higher for Miscanthus (18.5 Mg ha). The results indicate that unfertilized switchgrass and Miscanthus are as effective as cool season grasses at mitigating N2O emissions and improving water quality, and that Miscanthus has potential production advantages over switchgrass grown on frequently saturated soils.
引用
收藏
页码:90 / 98
页数:9
相关论文
共 50 条
  • [31] Biochar mitigates N2O emissions by promoting complete denitrification in acidic and alkaline paddy soils
    Wei, Zhijun
    Li, Chenglin
    Ma, Xiaofang
    Ma, Shutan
    Han, Zongyang
    Yan, Xiaoyuan
    Shan, Jun
    EUROPEAN JOURNAL OF SOIL SCIENCE, 2023, 74 (06)
  • [32] Real Time Monitoring of N2O Emissions from Agricultural Soils using FTIR Spectroscopy
    Dubowski, Y.
    Harush, D.
    Shaviv, A.
    Stone, L.
    Linker, R.
    SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 2014, 78 (01) : 61 - 69
  • [33] Assessing N2O Emissions from Tropical Crop Cultivation in Mineral and Peatland Soils: A Review
    Suwardi
    Darmawan
    Djajakirana, Gunawan
    Sumawinata, Basuki
    Al Viandari, Nourma
    CARAKA TANI-JOURNAL OF SUSTAINABLE AGRICULTURE, 2023, 38 (02): : 308 - 326
  • [34] Spatial variability and biophysicochemical controls on N2O emissions from differently tilled arable soils
    Jahangir, Mohammad Mofizur Rahman
    Roobroeck, Dries
    van Cleemput, Oswald
    Boeckx, Pascal
    BIOLOGY AND FERTILITY OF SOILS, 2011, 47 (07) : 753 - 766
  • [35] Groundwater seeps are hot spots of denitrification and N2O emissions in a restored wetland
    Klionsky, Sarah M.
    Neill, Christopher
    Helton, Ashley M.
    Lawrence, Beth
    BIOGEOCHEMISTRY, 2024, 167 (08) : 1041 - 1056
  • [36] Strong pH influence on N2O and CH4 fluxes from forested organic soils
    Weslien, P.
    Klemedtsson, A. Kasimir
    Borjesson, G.
    Klemedtsson, L.
    EUROPEAN JOURNAL OF SOIL SCIENCE, 2009, 60 (03) : 311 - 320
  • [37] Comparison of field and laboratory measurement of denitrification and N2O production in the saturated zone of hydromorphic soils
    Well, R.
    Augustin, J.
    Meyer, K.
    Myrold, D.D.
    Soil Biology and Biochemistry, 2003, 35 (06) : 783 - 799
  • [38] Estimating N2O emissions from soils under natural vegetation in China
    Xu-Ri
    Wang, Yuesi
    Wang, Yinghong
    Niu, Haishan
    Liu, Yongwen
    Zhuang, Qianlai
    PLANT AND SOIL, 2019, 434 (1-2) : 271 - 287
  • [39] A metamodelling approach to estimate global N2O emissions from agricultural soils
    Perlman, Joshua
    Hijmans, Robert J.
    Horwath, William R.
    GLOBAL ECOLOGY AND BIOGEOGRAPHY, 2014, 23 (08): : 912 - 924
  • [40] An inventory of global N2O emissions from the soils of natural terrestrial ecosystems
    Zhuang, Qianlai
    Lu, Yanyu
    Chen, Min
    ATMOSPHERIC ENVIRONMENT, 2012, 47 : 66 - 75