Combining MRI and CSF measures for classification of Alzheimer's disease and prediction of mild cognitive impairment conversion

被引:259
作者
Westman, Eric [1 ]
Muehlboeck, J-Sebastian
Simmons, Andrew [2 ,3 ]
机构
[1] Kings Coll London, Inst Psychiat, Dept Neuroimaging, London SE5 8AF, England
[2] NIHR, Biomed Res Ctr Mental Hlth, London, England
[3] Kings Coll London, Ctr Neurodegenerat Res, London SE5 8AF, England
基金
美国国家卫生研究院;
关键词
CSF; MRI; OPLS; AD; MCI conversion; HUMAN CEREBRAL-CORTEX; MAGNETIC-RESONANCE IMAGES; CORTICAL SURFACE; GEOMETRICALLY ACCURATE; HEALTHY CONTROLS; DIAGNOSIS; PLS; SEGMENTATION; REGRESSION; BIOMARKERS;
D O I
10.1016/j.neuroimage.2012.04.056
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The suggested revision of the NINCDS-ADRDA criterion for the diagnosis of Alzheimer's disease (AD) includes at least one abnormal biomarker among magnetic resonance imaging (MRI), positron emission tomography (PET) and cerebrospinal fluid (CSF). We aimed to investigate if the combination of baseline MRI and CSF could enhance the classification of AD compared to using either alone and predict mild cognitive impairment (MCI) conversion at multiple future time points. 369 subjects from the Alzheimer's disease Neuroimaging Initiative (ADNI) were included in the study (AD = 96, MCI = 162 and CTL = 111). Freesurfer was used to generate regional subcortical volumes and cortical thickness measures. A total of 60 variables were used for orthogonal partial least squares to latent structures (OPLS) multivariate analysis (57 MRI measures and 3 CSF measures: A beta(42), t-tau and p-tau). Combining MRI and CSF gave the best results for distinguishing AD vs. CTL. We found an accuracy of 91.8% for the combined model at baseline compared to 81.6% for CSF measures and 87.0% for MRI measures alone. The combined model also gave the best accuracy when distinguishing between MCI vs. CTL (77.6%) at baseline. MCI subjects who converted to AD by 12 and 18 month follow-up were accurately predicted at baseline using an AD vs. CTL model (82.9% and 86.4% respectively), with lower prediction accuracies for those MCI subjects converting by 24 and 36 month follow up (75.4% and 68.0% respectively). The overall prediction accuracies for converters and non-converters ranged from 58.6% to 66.4% at different time points. Combining MRI and CSF measures in a multivariate model at baseline gave better accuracy for discriminating between AD and CTL, between MCI and CTL and for predicting future conversion from MCI to AD, than using either MRI or CSF separately. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:229 / 238
页数:10
相关论文
共 50 条
[21]   Combining Neuropsychological and Structural Neuroimaging Indicators of Conversion to Alzheimer's Disease in Amnestic Mild Cognitive Impairment [J].
Venneri, Annalena ;
Gorgoglione, Giovanni ;
Toraci, Cristian ;
Nocetti, Luca ;
Panzetti, Patrizia ;
Nichelli, Paolo .
CURRENT ALZHEIMER RESEARCH, 2011, 8 (07) :789-797
[22]   Classification of Mild Cognitive Impairment and Alzheimer's Disease Using Manual Motor Measures [J].
Koppelmans, Vincent ;
Ruitenberg, Marit F. L. ;
Schaefer, Sydney Y. ;
King, Jace B. ;
Jacobo, Jasmine M. ;
Silvester, Benjamin P. ;
Mejia, Amanda F. ;
van der Geest, Jos ;
Hoffman, John M. ;
Tasdizen, Tolga ;
Duff, Kevin .
NEURODEGENERATIVE DISEASES, 2024, 24 (02) :54-70
[23]   Automated MRI measures identify individuals with mild cognitive impairment and Alzheimers disease [J].
Desikan, Rahul S. ;
Cabral, Howard J. ;
Hess, Christopher P. ;
Dillon, William P. ;
Glastonbury, Christine M. ;
Weiner, Michael W. ;
Schmansky, Nicholas J. ;
Greve, Douglas N. ;
Salat, David H. ;
Buckner, Randy L. ;
Fischl, Bruce .
BRAIN, 2009, 132 :2048-2057
[24]   Regional Magnetic Resonance Imaging Measures for Multivariate Analysis in Alzheimer’s Disease and Mild Cognitive Impairment [J].
Eric Westman ;
Carlos Aguilar ;
J-Sebastian Muehlboeck ;
Andrew Simmons .
Brain Topography, 2013, 26 :9-23
[25]   Different multivariate techniques for automated classification of MRI data in Alzheimer's disease and mild cognitive impairment [J].
Aguilar, Carlos ;
Westman, Eric ;
Muehlboeck, J-Sebastian ;
Mecocci, Patrizia ;
Vellas, Bruno ;
Tsolaki, Magda ;
Kloszewska, Iwona ;
Soininen, Hilkka ;
Lovestone, Simon ;
Spenger, Christian ;
Simmons, Andrew ;
Wahlund, Lars-Olof .
PSYCHIATRY RESEARCH-NEUROIMAGING, 2013, 212 (02) :89-98
[26]   CSF Biomarkers in Prediction of Cerebral and Clinical Change in Mild Cognitive Impairment and Alzheimer's Disease [J].
Fjell, Anders M. ;
Walhovd, Kristine B. ;
Fennema-Notestine, Christine ;
McEvoy, Linda K. ;
Hagler, Donald J. ;
Holland, Dominic ;
Brewer, James B. ;
Dale, Anders M. .
JOURNAL OF NEUROSCIENCE, 2010, 30 (06) :2088-2101
[27]   Prediction of Alzheimer's disease in subjects with mild cognitive impairment from the ADNI cohort using patterns of cortical thinning [J].
Eskildsen, Simon F. ;
Coupe, Pierrick ;
Garcia-Lorenzo, Daniel ;
Fonov, Vladimir ;
Pruessner, Jens C. ;
Collins, D. Louis .
NEUROIMAGE, 2013, 65 :511-521
[28]   Novel CSF biomarkers for Alzheimer's disease and mild cognitive impairment [J].
Hu, William T. ;
Chen-Plotkin, Alice ;
Arnold, Steven E. ;
Grossman, Murray ;
Clark, Christopher M. ;
Shaw, Leslie M. ;
Pickering, Eve ;
Kuhn, Max ;
Chen, Yu ;
McCluskey, Leo ;
Elman, Lauren ;
Karlawish, Jason ;
Hurtig, Howard I. ;
Siderowf, Andrew ;
Lee, Virginia M. -Y. ;
Soares, Holly ;
Trojanowski, John Q. .
ACTA NEUROPATHOLOGICA, 2010, 119 (06) :669-678
[29]   Novel CSF biomarkers for Alzheimer’s disease and mild cognitive impairment [J].
William T. Hu ;
Alice Chen-Plotkin ;
Steven E. Arnold ;
Murray Grossman ;
Christopher M. Clark ;
Leslie M. Shaw ;
Eve Pickering ;
Max Kuhn ;
Yu Chen ;
Leo McCluskey ;
Lauren Elman ;
Jason Karlawish ;
Howard I. Hurtig ;
Andrew Siderowf ;
Virginia M.-Y. Lee ;
Holly Soares ;
John Q. Trojanowski .
Acta Neuropathologica, 2010, 119 :669-678
[30]   Automated Hippocampal Subfield Measures as Predictors of Conversion from Mild Cognitive Impairment to Alzheimer’s Disease in Two Independent Cohorts [J].
Wasim Khan ;
Eric Westman ;
Nigel Jones ;
Lars-Olof Wahlund ;
Patrizia Mecocci ;
Bruno Vellas ;
Magda Tsolaki ;
Iwona Kłoszewska ;
Hilkka Soininen ;
Christian Spenger ;
Simon Lovestone ;
J-Sebastian Muehlboeck ;
Andrew Simmons .
Brain Topography, 2015, 28 :746-759