Optimal Swing Up and Stabilization Control for Inverted Pendulum via Stable Manifold Method

被引:28
|
作者
Horibe, Takamasa [1 ]
Sakamoto, Noboru [2 ]
机构
[1] Nagoya Univ, Dept Aerosp Engn, Nagoya, Aichi 4648603, Japan
[2] Nanzan Univ, Fac Sci & Engn, Nagoya, Aichi 4668673, Japan
关键词
Hamilton-Jacobi equation (HJE); inverted pendulum; nonlinear optimal control; stable manifold method; BELLMAN EQUATION; FEEDBACK-CONTROL; REGULATOR; CART;
D O I
10.1109/TCST.2017.2670524
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This brief addresses the problem of swing up and stabilization for inverted pendulum. It is shown that the stable manifold method, recently proposed for approximately solving Hamilton-Jacobi equation (HJE) in nonlinear optimal control problem, is capable of designing feedback control for this problem. The experimental results include two types of controllers (one-swing and two-swing), which indicates the nonuniqueness of solution for an HJE. This brief further provides a variational analysis method for investigating and enlarging a stable manifold and shows a detail structure of the stable manifold for a 2-D pendulum from which controllers from one-swing to five-swing can be derived.
引用
收藏
页码:708 / 715
页数:8
相关论文
共 50 条
  • [31] Q-learning-based Model-free Swing Up Control of an Inverted Pendulum
    Ghio, Alessio
    Ramos, Oscar E.
    PROCEEDINGS OF THE 2019 IEEE XXVI INTERNATIONAL CONFERENCE ON ELECTRONICS, ELECTRICAL ENGINEERING AND COMPUTING (INTERCON), 2019,
  • [32] Time optimal swing-up of the planar pendulum
    Mason, Paolo
    Broucke, Mireille
    Piccoli, Benedetto
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2008, 53 (08) : 1876 - 1886
  • [33] Stabilization of the Inverted Pendulum via a Constructive Lyapunov Function
    Carlos Aguilar-Ibáñez
    Miguel S. Suarez-Castanon
    Acta Applicandae Mathematicae, 2010, 111 : 15 - 26
  • [34] Stabilization of the Inverted Pendulum via a Constructive Lyapunov Function
    Aguilar-Ibanez, Carlos
    Suarez-Castanon, Miguel S.
    ACTA APPLICANDAE MATHEMATICAE, 2010, 111 (01) : 15 - 26
  • [35] Investigation of Optimal Control Approaches for Inverted Pendulum
    Jha, S. K.
    Yadav, A. K.
    Gaur, Prerna
    2014 6th IEEE Power India International Conference (PIICON), 2014,
  • [36] Stabilization and disturbance attenuation control of the gyroscopic inverted pendulum
    Wasiwitono, Unggul
    Wahjudi, Arif
    Saputra, Ari K.
    Yohanes
    JOURNAL OF VIBRATION AND CONTROL, 2021, 27 (3-4) : 415 - 425
  • [37] Numerical Computational Improvement of the Stable-Manifold Method for Nonlinear Optimal Control
    Oishi, Yasuaki
    Sakamoto, Noboru
    IFAC PAPERSONLINE, 2017, 50 (01): : 5103 - 5108
  • [38] Comparison of Inverted Pendulum Stabilization with PID, LQ, and MPC Control
    Bakarac, Peter
    Klauco, Martin
    Fikar, Miroslav
    2018 CYBERNETICS & INFORMATICS (K&I), 2018,
  • [39] Nonlinear optimal control for the inertia wheel inverted pendulum
    Rigatos G.
    Abbaszadeh M.
    Hamida M.A.
    Cyber-Physical Systems, 2020, 6 (02) : 55 - 75
  • [40] Optimal Control Theory Research on Inverted Pendulum System
    Wu, Shuomei
    Song, Jianwei
    Zhang, Wenqing
    CURRENT DEVELOPMENT OF MECHANICAL ENGINEERING AND ENERGY, PTS 1 AND 2, 2014, 494-495 : 1118 - 1121