Automatic Pain Intensity Estimation with Heteroscedastic Conditional Ordinal Random Fields

被引:0
作者
Rudovic, Ognjen [1 ]
Pavlovic, Vladimir [2 ]
Pantic, Maja [1 ,3 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Comp, London SW7 2AZ, England
[2] Rutgers State Univ, Dept Comp Sci, Piscataway, NJ 08855 USA
[3] Univ Twente, EEMCS, NL-7500 AE Enschede, Netherlands
来源
ADVANCES IN VISUAL COMPUTING, PT II | 2013年 / 8034卷
基金
美国国家科学基金会; 英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
REGRESSION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Automatic pain intensity estimation from facial images is challenging mainly because of high variability in subject-specific pain expressiveness. This heterogeneity in the subjects causes their facial appearance to vary significantly when experiencing the same pain level. The standard classification methods (e. g., SVMs) do not provide a principled way of accounting for this heterogeneity. To this end, we propose the heteroscedastic Conditional Ordinal Random Field (CORF) model for automatic estimation of pain intensity. This model generalizes the CORF framework for modeling sequences of ordinal variables, by adapting it for heteroscedasticity. This is attained by allowing the variance in the ordinal probit model in the CORF to change depending on the input features, resulting in the model able to adapt to the pain expressiveness level specific to each subject. Our experimental results on the UNBC Shoulder Pain Database show that modeling heterogeneity in the subjects with the framework of CORFs improves the pain intensity estimation attained by the standard CORF model, and the other commonly used classification models.
引用
收藏
页码:234 / 243
页数:10
相关论文
共 19 条
[1]  
[Anonymous], 1979, PSYCHOL B
[2]  
Barla A, 2003, 2003 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL 3, PROCEEDINGS, P513
[3]   LIBSVM: A Library for Support Vector Machines [J].
Chang, Chih-Chung ;
Lin, Chih-Jen .
ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2011, 2 (03)
[4]  
Chu S., 2005, P 22 INT C MACH LEAR, P145, DOI DOI 10.1145/1102351.1102370
[5]  
Chu W, 2005, J MACH LEARN RES, V6, P1019
[6]  
Hammal Z, 2012, ICMI '12: PROCEEDINGS OF THE ACM INTERNATIONAL CONFERENCE ON MULTIMODAL INTERACTION, P47, DOI 10.1145/2388676.2388688
[7]  
He XF, 2004, ADV NEUR IN, V16, P153
[8]  
Kaltwang S, 2012, LECT NOTES COMPUT SC, V7432, P368, DOI 10.1007/978-3-642-33191-6_36
[9]   Statistical models and learning algorithms for ordinal regression problems [J].
Kanamori, Takafumi .
INFORMATION FUSION, 2013, 14 (02) :199-207
[10]  
Kim M, 2010, LECT NOTES COMPUT SC, V6313, P649