Robust and fast non-singular terminal sliding mode control for piezoelectric actuators

被引:40
作者
Al-Ghanimi, Ali [1 ,2 ]
Zheng, Jinchuan [1 ]
Man, Zhihong [1 ]
机构
[1] Swinburne Univ Technol, Sch Software & Elect Engn, Melbourne, Vic 3122, Australia
[2] Univ Kufa, Fac Engn, Al Najaf, Iraq
关键词
piezoelectric actuators; variable structure systems; uncertain systems; nonlinear control systems; robust control; linear systems; fast nonsingular terminal sliding mode control; PEA; actuator uncertainties; nonlinear behaviour; hysteresis property; robust control system; systematic control method; FNTSM control method; conventional sliding mode; CSM; zero error convergence; finite time; parametric uncertainties; model-free velocity estimator; linear controller; TRACKING CONTROL; HYSTERESIS; OBSERVER; PIEZOACTUATORS; COMPENSATION; MANIPULATORS; MICROSCOPY; DYNAMICS;
D O I
10.1049/iet-cta.2015.0401
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Piezoelectric actuators (PEAs) are essential elements in many systems that require high precision and accuracy. However, the difficulty with the use of PEAs is their actuator uncertainties including the highly non-linear behaviour which is a consequence of the hysteresis property inherently within PEAs. Therefore, a robust control system is essential for such actuators. This study proposes a systematic control method that utilises a fast non-singular terminal sliding mode (FNTSM) for PEAs. Unlike the conventional sliding mode (CSM), the FNTSM control method is characterised by chatter free. Besides, a zero error convergence can be guaranteed in finite time in the presence of disturbance and system uncertainties. The design of the FNTSM control is based on the bounded information of parametric uncertainties. The feedback velocity is provided for the FNTSM controller by using the a model-free velocity estimator. Theoretical analysis and experimental results reveal that the FNTSM controller can achieve faster and higher precision performance in comparison with either a CSM or a linear controller.
引用
收藏
页码:2678 / 2687
页数:10
相关论文
共 35 条
[1]   Modeling piezoelectric actuators [J].
Adriaens, HJMTA ;
de Koning, WL ;
Banning, R .
IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2000, 5 (04) :331-341
[2]  
[Anonymous], 1991, Applied Nonlinear Control
[3]   High speed nano-scale positioning using a piezoelectric tube actuator with active shunt control [J].
Aphale, S. ;
Fleming, A. J. ;
Moheimani, S. O. R. .
MICRO & NANO LETTERS, 2007, 2 (01) :9-12
[4]   Scanning tunneling microscopy (Reprinted from IBM Journal of Research and development, vol 30, 1986) [J].
Binnig, G ;
Rohrer, H .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 2000, 44 (1-2) :279-293
[5]   SINGLE-TUBE 3-DIMENSIONAL SCANNER FOR SCANNING TUNNELING MICROSCOPY [J].
BINNIG, G ;
SMITH, DPE .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1986, 57 (08) :1688-1689
[6]   Optimal control of active structures with piezoelectric modal sensors and actuators [J].
Chen, CQ ;
Shen, YP .
SMART MATERIALS & STRUCTURES, 1997, 6 (04) :403-409
[7]   USE OF PIEZOELECTRIC ACTUATORS AS ELEMENTS OF INTELLIGENT STRUCTURES [J].
CRAWLEY, EF ;
DELUIS, J .
AIAA JOURNAL, 1987, 25 (10) :1373-1385
[8]   Creep, hysteresis, and vibration compensation for piezoactuators: Atomic force microscopy application [J].
Croft, D ;
Shed, G ;
Devasia, S .
JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2001, 123 (01) :35-43
[9]   Peaking free variable structure control of uncertain linear systems based on a high-gain observer [J].
Cunha, Jose Paulo V. S. ;
Costa, Ramon R. ;
Lizarralde, Fernando ;
Hsu, Liu .
AUTOMATICA, 2009, 45 (05) :1156-1164
[10]   A survey of control issues in nanopositioning [J].
Devasia, Santosh ;
Eleftheriou, Evangelos ;
Moheimani, S. O. Reza .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2007, 15 (05) :802-823