Electrochemical performance of rechargeable Li/LiFePO4 cells with ionic liquid electrolyte: Effects of Li salt at 25 °C and 50 °C

被引:29
作者
Wongittharom, Nithinai [1 ]
Lee, Tai-Chou [1 ]
Hsu, Ching-Hua [2 ]
Fey, George Ting-Kuo [1 ]
Huang, Kai-Pin [1 ]
Chang, Jeng-Kuei [1 ,2 ,3 ]
机构
[1] Natl Cent Univ, Dept Chem & Mat Engn, Tao Yuan, Taiwan
[2] Natl Cent Univ, Inst Mat Sci & Engn, Tao Yuan, Taiwan
[3] Natl Cent Univ, Dept Mech Engn, Tao Yuan, Taiwan
关键词
Ionic liquid; Li battery; Li salt; Temperature; Electrolyte; SECONDARY BATTERIES; CATHODE MATERIALS; LITHIUM; LIFEPO4; STABILITY; CONDUCTIVITY; CHALLENGES; GRAPHITE;
D O I
10.1016/j.jpowsour.2013.05.014
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium hexafluorophosphate (LiPF6) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) are used as Li salts in butylmethylpyrrolidinium-bis(trifluoromethanesulfonyl)imide (BMP-TFSI) ionic liquid (IL) electrolyte for Li/LiFePO4 cells. This kind of IL electrolyte shows high thermal stability (>400 degrees C) and non-flammability, and is thus ideal for high-safety applications. At 25 degrees C, a maximum capacity of 113 mAh g(-1) (at 0.1 C) is found for LiFePO4 in the IL with 0.5 M LiTESI. An excessive LiTESI concentration leads to a capacity decrease due to reduced electrolyte ionic conductivity. At 50 degrees C, the measured capacity and rate capability are significantly improved compared to those at 25 degrees C. With 1 M LiTESI-doped IL electrolyte (the optimum concentration,at 50 degrees C), a capacity of 140 mAh g(-1) is found at 0.1 C and 45% of the capacity can be retained when the rate increases to 5 C, values which are comparable to those found in a traditional organic electrolyte. In the IL electrolyte, the LiFePO4 electrode shows better cyclic stability at 50 degrees C than it does at 25 degrees C; this trend is opposite to that found in the organic electrolyte. At 50 degrees C, there is negligible capacity loss of LiFePO4 after 100 charge-discharge cycles in 1 M LiTESI-doped BMP-TFSI IL electrolyte. (C) 2013 Elsevier B.V. All rights reserved(.)
引用
收藏
页码:676 / 682
页数:7
相关论文
共 39 条
[1]   Lithium insertion in graphite from ternary ionic liquid-lithium salt electrolytes I. Electrochemical characterization of the electrolytes [J].
Appetecchi, Giovanni B. ;
Montanino, Maria ;
Balducci, Andrea ;
Lux, Simon F. ;
Winterb, Martin ;
Passerini, Stefano .
JOURNAL OF POWER SOURCES, 2009, 192 (02) :599-605
[2]   Effect of the alkyl group on the synthesis and the electrochemical properties of N-alkyl-N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide ionic liquids [J].
Appetecchi, Giovanni B. ;
Montanino, Maria ;
Zane, Daniela ;
Carewska, Maria ;
Alessandrini, Fabrizio ;
Passerini, Stefano .
ELECTROCHIMICA ACTA, 2009, 54 (04) :1325-1332
[3]   Thermal stability and flammability of electrolytes for lithium-ion batteries [J].
Arbizzani, Catia ;
Gabrielli, Giulio ;
Mastragostino, Marina .
JOURNAL OF POWER SOURCES, 2011, 196 (10) :4801-4805
[4]   Synthesis and characterization of two ionic liquids with emphasis on their chemical stability towards metallic lithium [J].
Bazito, Fernanda F. C. ;
Kawano, Yoshio ;
Torresi, Roberto M. .
ELECTROCHIMICA ACTA, 2007, 52 (23) :6427-6437
[5]   Energy storage beyond the horizon: Rechargeable lithium batteries [J].
Bruce, Peter G. .
SOLID STATE IONICS, 2008, 179 (21-26) :752-760
[6]   Molecular Environment and Enhanced Diffusivity of Li+ Ions in Lithium-Salt-Doped Ionic Liquid Electrolytes [J].
Castiglione, Franca ;
Ragg, Enzio ;
Mele, Andrea ;
Appetecchi, Giovanni Battista ;
Montanino, Maria ;
Passerini, Stefano .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2011, 2 (03) :153-157
[7]   Surfactant based sol-gel approach to nanostructured LiFePO4 for high rate Li-ion batteries [J].
Choi, Daiwon ;
Kumta, Prashant N. .
JOURNAL OF POWER SOURCES, 2007, 163 (02) :1064-1069
[8]   Particle size effects of carbon sources on electrochemical properties of LiFePO4/C composites [J].
Fey, George Ting-Kuo ;
Tu, Hui-Jyuan ;
Huang, Kai-Pin ;
Lin, Yi-Chuan ;
Kao, Hsien-Ming ;
Chan, Shih-Hung .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2012, 16 (05) :1857-1862
[9]   A polyethylene glycol-assisted carbothermal reduction method to synthesize LiFePO4 using industrial raw materials [J].
Fey, George Ting-Kuo ;
Huang, Kai-Pin ;
Kao, Hsien-Ming ;
Li, Wen-Hsien .
JOURNAL OF POWER SOURCES, 2011, 196 (05) :2810-2818
[10]   Electrochemical properties of LiFePO4 prepared via ball-milling [J].
Fey, George Ting-Kuo ;
Chen, Yun Geng ;
Kao, Hsien-Ming .
JOURNAL OF POWER SOURCES, 2009, 189 (01) :169-178