Fiber reinforced shape-memory polymer composite and its application in a deployable hinge

被引:421
作者
Lan, Xin [1 ]
Liu, Yanju [2 ]
Lv, Haibao [1 ]
Wang, Xiaohua [1 ]
Leng, Jinsong [1 ]
Du, Shanyi [1 ]
机构
[1] Harbin Inst Technol, Ctr Composite Mat & Struct, Harbin, Peoples R China
[2] Harbin Inst Technol, Dept Aerosp Sci & Mech, Harbin, Peoples R China
关键词
MOISTURE;
D O I
10.1088/0964-1726/18/2/024002
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
This paper investigates the shape recovery behavior of thermoset styrene-based shape-memory polymer composite (SMPC) reinforced by carbon fiber fabrics, and demonstrates the feasibility of using an SMPC hinge as a deployable structure. The major advantages of shape-memory polymers (SMPs) are their extremely high recovery strain, low density and low cost. However, relatively low modulus and low strength are their intrinsic drawbacks. A fiber reinforced SMPC which may overcome the above-mentioned disadvantages is studied here. The investigation was conducted by three types of test, namely dynamic mechanical analysis (DMA), a shape recovery test, and optical microscopic observations of the deformation mechanism for an SMPC specimen. Results reveal that the SMPC exhibits a higher storage modulus than that of a pure SMP. At/above T-g, the shape recovery ratio of the SMPC upon bending is above 90%. The shape recovery properties of the SMPC become relatively stable after some packaging/deployment cycles. Additionally, fiber microbuckling is the primary mechanism for obtaining a large strain in the bending of the SMPC. Moreover, an SMPC hinge has been fabricated, and a prototype of a solar array actuated by the SMPC hinge has been successfully deployed.
引用
收藏
页数:6
相关论文
共 26 条
[1]   Shape memory mechanics of an elastic memory composite resin [J].
Abrahamson, ER ;
Lake, MS ;
Munshi, NA ;
Gall, K .
JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2003, 14 (10) :623-632
[2]   Shape-memory polymers [J].
Behl, Marc ;
Lendlein, Andreas .
MATERIALS TODAY, 2007, 10 (04) :20-28
[3]   Electroactive shape-memory polyurethane composites incorporating carbon nanotubes [J].
Cho, JW ;
Kim, JW ;
Jung, YC ;
Goo, NS .
MACROMOLECULAR RAPID COMMUNICATIONS, 2005, 26 (05) :412-416
[4]   Carbon fiber reinforced shape memory polymer composites [J].
Gall, K ;
Mikulas, M ;
Munshi, NA ;
Beavers, F ;
Tupper, M .
JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2000, 11 (11) :877-886
[5]   Shape memory polymer nanocomposites [J].
Gall, K ;
Dunn, ML ;
Liu, YP ;
Finch, D ;
Lake, M ;
Munshi, NA .
ACTA MATERIALIA, 2002, 50 (20) :5115-5126
[6]   Electromagnetic wave transmission through subwavelength metallic meshes sandwiched between split rings [J].
Hou, B ;
Wen, H ;
Leng, Y ;
Wen, WJ .
APPLIED PHYSICS LETTERS, 2005, 87 (20) :1-3
[7]   Water-driven programmable polyurethane shape memory polymer: Demonstration and mechanism [J].
Huang, WM ;
Yang, B ;
An, L ;
Li, C ;
Chan, YS .
APPLIED PHYSICS LETTERS, 2005, 86 (11) :1-3
[8]   Smart polymer fibers with shape memory effect [J].
Ji, FengLong ;
Zhu, Yong ;
Hu, JinLian ;
Liu, Yan ;
Yeung, Lap-Yan ;
Ye, GuangDou .
SMART MATERIALS AND STRUCTURES, 2006, 15 (06) :1547-1554
[9]   Light-induced shape-memory polymers [J].
Lendlein, A ;
Jiang, HY ;
Jünger, O ;
Langer, R .
NATURE, 2005, 434 (7035) :879-882
[10]   Electrical conductivity of thermoresponsive shape-memory polymer with embedded micron sized Ni powder chains [J].
Leng, J. S. ;
Lan, X. ;
Liu, Y. J. ;
Du, S. Y. ;
Huang, W. M. ;
Liu, N. ;
Phee, S. J. ;
Yuan, Q. .
APPLIED PHYSICS LETTERS, 2008, 92 (01)