Asymptotics of the zeros of relativistic hermite polynomials

被引:2
作者
He, M
Pan, K
Ricci, PE
机构
[1] BARRY UNIV,DEPT MATH & COMP SCI,MIAMI SHORES,FL 33161
[2] UNIV ROMA LA SAPIENZA,DIPARTIMENTO MATEMAT G CASTELNUOVO,I-00185 ROME,ITALY
关键词
hermite polynomials; orthogonal polynomials; HARMONIC-OSCILLATOR; NORM; LIVE;
D O I
10.1137/S003614109529642X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The relativistic Hermite polynomial (RHP) is a class of orthogonal polynomials associated with varying weights. We study the asymptotics of the zeros of the RHP when both degree n of polynomials and relativistic parameter N approach infinity.
引用
收藏
页码:1248 / 1257
页数:10
相关论文
共 50 条
  • [31] Approximations for zeros of Hermite functions
    Elbert, Arpad
    Muldoon, Martin E.
    SPECIAL FUNCTIONS AND ORTHOGONAL POLYNOMIALS, 2008, 471 : 117 - +
  • [32] SOME GENERALIZED FIBONACCI AND HERMITE POLYNOMIALS
    Shannon, A. G.
    Deveci, Omur
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2018, 40 (04): : 419 - 427
  • [33] Zero sets of bivariate Hermite polynomials
    Area, Ivan
    Dimitrov, Dimitar K.
    Godoy, Eduardo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 421 (01) : 830 - 841
  • [34] Exceptional Charlier and Hermite orthogonal polynomials
    Duran, Antonio J.
    JOURNAL OF APPROXIMATION THEORY, 2014, 182 : 29 - 58
  • [35] Recurrence Relations for Wronskian Hermite Polynomials
    Bonneux, Niels
    Stevens, Marco
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2018, 14
  • [36] Bounds for the zeros of symmetric Kravchuk polynomials
    Area, Ivan
    Dimitrov, Dimitar K.
    Godoy, Eduardo
    Paschoa, Vanessa
    NUMERICAL ALGORITHMS, 2015, 69 (03) : 611 - 624
  • [37] A characterization of Hermite polynomials
    Kwon, KH
    Yoo, BH
    Yoon, GY
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1997, 78 (02) : 295 - 299
  • [38] Truncated Hermite polynomials
    Dominici, Diego
    Marcellan, Francisco
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2023, : 701 - 732
  • [39] A NOTE ON HERMITE POLYNOMIALS
    Kim, Taekyun
    Kim, Dae San
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2017, 23 (04) : 771 - 780
  • [40] ON ZEROS OF PARAORTHOGONAL POLYNOMIALS
    Lun, Yen Chi
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (08) : 3389 - 3399