Overexpression of the glutathione S-transferase gene from Pyrus pyrifolia fruit improves tolerance to abiotic stress in transgenic tobacco plants

被引:59
|
作者
Liu, D. [1 ]
Liu, Y. [1 ]
Rao, J. [1 ]
Wang, G. [1 ]
Li, H. [1 ]
Ge, F. [1 ]
Chen, C. [1 ]
机构
[1] Kunming Univ Sci & Technol, Fac Life Sci & Technol, Kunming 650500, Peoples R China
关键词
glutathione S-transferase; Pyrus pyrifolia Nakai; overexpression; transgenic tobacco; drought; NaCl; Cd tolerance; OXIDATIVE STRESS; FUNCTIONAL DIVERGENCE; EXPRESSION ANALYSIS; MOLECULAR-CLONING; ARABIDOPSIS; SEEDLINGS; DROUGHT; FAMILY; PURIFICATION; COMBINATION;
D O I
10.1134/S0026893313040109
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Glutathione S-transferases (GSTs) are ubiquitous enzymes in animals and plants, and they are multifunctional proteins encoded by a large gene family. GSTs are involved in response to the oxidative stress including drought, salt, heavy metals, and so on. Under oxidative stress, the excessive reactive oxygen species (ROS) induce an increase in GST levels, and then the GSTs metabolize the toxic products of lipid peroxidation, damaged DNA and other molecules. Previously, a full-length cDNA of a novel zeta GST gene, PpGST, was characterized from fruit of Pyrus pyrifolia Nakai cv. Huobali. In the present study, a constitutive plant expression vector of PpGST was constructed and transferred into tobacco (Nicotiana tabacum L. cv Xanthi) to verify the function of PpGST. As a result, the PpGST gene was successfully integrated into the genome of the transgenic tobacco lines and expressed as expected in the transformants through Southern blotting and quantitative reverse transcription-polymerase chain reaction (QRT-PCR) analysis. Growth of T1 generation plants of PpGST transgenic lines and WT under non-stressful conditions was similar, however, the transgenic tobacco lines showed relatively normal growth under drought, NaCl, and cadmium (Cd) stresses. Furthermore, the T1 transgenic tobacco lines showed significantly slower superoxide anion production rate than the WT under abiotic stress. Simultaneously, the MDA content of each T1 transgenic tobacco plant was only slightly increased and significantly lower than that of the WT under drought, salt and Cd stress. Together with the GST activity of the transgenic tobacco lines, which was significantly increased under stressful conditions, as compared with that in WT, overexpression of PpGST in tobacco enhanced the tolerance of transgenic tobacco lines to oxidative damage caused by drought, NaCl, and Cd stresses.
引用
收藏
页码:515 / 523
页数:9
相关论文
共 50 条
  • [1] Overexpression of the glutathione S-transferase gene from Pyrus pyrifolia fruit improves tolerance to abiotic stress in transgenic tobacco plants
    D. Liu
    Y. Liu
    J. Rao
    G. Wang
    H. Li
    F. Ge
    C. Chen
    Molecular Biology, 2013, 47 : 515 - 523
  • [2] Overexpression of the Glutathione S-Transferase ATGSTF11 Gene Improves Growth and Abiotic Stress Tolerance of Tobacco Transgenic Plants
    B. R. Kuluev
    A. A. Ermoshin
    E. V. Mikhaylova
    Russian Journal of Plant Physiology, 2022, 69
  • [3] Overexpression of the Glutathione S-Transferase ATGSTF11 Gene Improves Growth and Abiotic Stress Tolerance of Tobacco Transgenic Plants
    Kuluev, B. R.
    Ermoshin, A. A.
    Mikhaylova, E. V.
    RUSSIAN JOURNAL OF PLANT PHYSIOLOGY, 2022, 69 (07)
  • [4] Overexpression of an alfalfa glutathione S-transferase gene improved the saline-alkali tolerance of transgenic tobacco
    Du, Binghao
    Zhao, Weidi
    An, Yimin
    Li, Yakun
    Zhang, Xue
    Song, Lili
    Guo, Changhong
    BIOLOGY OPEN, 2019, 8 (09):
  • [5] Stress tolerance in transgenic tobacco seedlings that overexpress glutathione S-transferase/glutathione peroxidase
    Roxas, VP
    Lodhi, SA
    Garrett, DK
    Mahan, JR
    Allen, RD
    PLANT AND CELL PHYSIOLOGY, 2000, 41 (11) : 1229 - 1234
  • [6] Transgenic Arabidopsis Plants Expressing Grape Glutathione S-Transferase Gene (VvGSTF13) Show Enhanced Tolerance to Abiotic Stress
    Xu, Jing
    Zheng, Ai-Qing
    Xing, Xiao-Juan
    Chen, Lei
    Fu, Xiao-Yan
    Peng, Ri-He
    Tian, Yong-Sheng
    Yao, Quan-Hong
    BIOCHEMISTRY-MOSCOW, 2018, 83 (06) : 755 - 765
  • [7] Transgenic Arabidopsis Plants Expressing Grape Glutathione S-Transferase Gene (VvGSTF13) Show Enhanced Tolerance to Abiotic Stress
    Jing Xu
    Ai-Qing Zheng
    Xiao-Juan Xing
    Lei Chen
    Xiao-Yan Fu
    Ri-He Peng
    Yong-Sheng Tian
    Quan-Hong Yao
    Biochemistry (Moscow), 2018, 83 : 755 - 765
  • [8] Overexpression of glutathione S-transferase glutathione peroxidase enhances the growth of transgenic tobacco seedlings during stress
    Roxas, VP
    Smith, RK
    Allen, ER
    Allen, RD
    NATURE BIOTECHNOLOGY, 1997, 15 (10) : 988 - 991
  • [9] Enhancement of phenol stress tolerance in transgenic Arabidopsis plants overexpressing glutathione S-transferase
    Xu, Jing
    Tian, Yong-Sheng
    Xing, Xiao-Juan
    Xu, Zhi-Sheng
    Zhu, Bo
    Fu, Xiao-Yan
    Peng, Ri-He
    Yao, Quan-Hong
    PLANT GROWTH REGULATION, 2017, 82 (01) : 37 - 45
  • [10] Overexpression of glutathione S-transferase/glutathioneperoxidase enhances the growth of transgenic tobacco seedlings during stress
    Virginia P. Roxas
    Roger K. Smith
    Eric R. Allen
    Randy D. Allen
    Nature Biotechnology, 1997, 15 : 988 - 991