Higher-order p-Laplacian boundary value problem at resonance on an unbounded domain

被引:1
作者
Iyase, Samuel A. [1 ]
Eke, Kanayo S. [1 ]
机构
[1] Covenant Univ, Dept Math, KM 10 Idiroko Rd,PMB 1023, Ota, Ogun State, Nigeria
关键词
Mathematics; Higher-order; Resonance; p-Laplacian; Unbounded domain; Coincidence degree; SOLVABILITY;
D O I
10.1016/j.heliyon.2020.e04826
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this work, we employ the extension of Mawhin's coincidence degree by Ge and Ren to investigate the solvability of the p-Laplacian higher-order boundary value problems of the form (w(t)phi(p)(x((n-1))(t)))' = h(t, x(t), ..., x((n-1))(t)), 0 < t < infinity, x((n-2))(0) = (n-2)!/eta(n-2)x(eta), x((n-1))(0) = x((i))(0) = 0, i = 1, 2, ..., n-3, n >= 3, x((n-2))(infinity) = integral(eta)(0)x((n-2))(s)dA(s), Where eta > 0, h : [0, infinity) x R-n -> R is a Caratheodory's function with A(0) = 0, A(eta) = 1, w is an element of C[0, infinity), w(t) > 0 for all t >= 0, phi(p)(s) = vertical bar s vertical bar(p-2)s.
引用
收藏
页数:8
相关论文
共 50 条