Controllability for Sobolev type fractional integro-differential systems in a Banach space

被引:23
作者
Ahmed, Hamdy M. [1 ]
机构
[1] El Shorouk Acad, Higher Inst Engn, El Shorouk City, Cairo, Egypt
关键词
fractional calculus; Sobolev type fractional integro-differential systems; controllability; compact semigroup; mild solution; Schauder fixed-point theorem;
D O I
10.1186/1687-1847-2012-167
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, by using compact semigroups and the Schauder fixed-point theorem, we study the sufficient conditions for controllability of Sobolev type fractional integro-differential systems in a Banach space. An example is provided to illustrate the obtained results.
引用
收藏
页数:10
相关论文
共 13 条
[1]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[2]   Boundary controllability of Sobolev-type abstract nonlinear integrodifferential systems [J].
Balachandran, K ;
Anandhi, ER ;
Dauer, JP .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 277 (02) :446-464
[3]   Controllability of Sobolev-type semilinear integrodifferential systems in Banach spaces [J].
Balachandran, K ;
Sakthivel, R .
APPLIED MATHEMATICS LETTERS, 1999, 12 (07) :63-71
[4]   Controllability of Sobolev-type integrodifferential systems in Banach spaces [J].
Balachandran, K ;
Dauer, JP .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 217 (02) :335-348
[5]  
Barenblatt G.E., 1960, J APPL MATH USSR, V24, P12861303, DOI [10.1016/0021-8928(60)90107-6, DOI 10.1016/0021-8928(60)90107-6]
[6]   ON A THEORY OF HEAT CONDUCTION INVOLVING 2 TEMPERATURES [J].
CHEN, PJ .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1968, 19 (04) :614-&
[7]   Some probability densities and fundamental solutions of fractional evolution equations [J].
El-Borai, MM .
CHAOS SOLITONS & FRACTALS, 2002, 14 (03) :433-440
[8]  
Huilgol R. R., 1968, International Journal of Non-Linear Mechanics, V3, P471, DOI 10.1016/0020-7462(68)90032-2
[9]   A PARTIAL FUNCTIONAL-DIFFERENTIAL EQUATION OF SOBOLEV TYPE [J].
LIGHTBOURNE, JH ;
RANKIN, SM .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1983, 93 (02) :328-337
[10]  
Miller K.S., 1993, INTRO FRACTIONAL INT