Relative numerical ranges

被引:1
作者
Bracic, Janko [1 ]
Diogo, Cristina [2 ,3 ]
机构
[1] Univ Ljubljana, NTF, SI-1000 Ljubljana, Slovenia
[2] Inst Univ Lisboa, Dept Matemat, P-1649026 Lisbon, Portugal
[3] Univ Lisbon, Inst Super Tecn, Dept Math, Ctr Math Anal Geometry & Dynam Syst, P-1049001 Lisbon, Portugal
关键词
Numerical range; ORTHOGONALITY; OPERATOR; DISTANCE; MATRICES; NORM;
D O I
10.1016/j.laa.2015.07.037
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Relying on the ideas of Stampfli [14] and Magajna [12] we introduce, for operators S and T on a separable complex Hilbert space, a new notion called the numerical range of S relative to T at r is an element of sigma(vertical bar T vertical bar). Some properties of these numerical ranges are proved. In particular, it is shown that the relative numerical ranges are non-empty convex subsets of the closure of the ordinary numerical range of S. We show that the position of zero with respect to the relative numerical range of S relative to T at parallel to T parallel to gives an information about the distance between the involved operators. This result has many interesting corollaries. For instance, one can characterize those complex numbers which are in the closure of the numerical range of S but are not in the spectrum of S. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:208 / 221
页数:14
相关论文
共 50 条
  • [21] Compressions and dilations of numerical ranges
    Maroulas, J
    Adam, M
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1999, 21 (01) : 230 - 244
  • [22] Numerical ranges of KMS matrices
    Gau, Hwa-Long
    Wu, Pei Yuan
    ACTA SCIENTIARUM MATHEMATICARUM, 2013, 79 (3-4): : 583 - 610
  • [23] On the boundary of weighted numerical ranges
    Cheung, Wai-Shun
    LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (01) : 78 - 86
  • [24] On matrices with elliptical numerical ranges
    Brown, ES
    Spitkovsky, IM
    LINEAR & MULTILINEAR ALGEBRA, 2004, 52 (3-4) : 177 - 193
  • [25] Numerical ranges and Gersgorin discs
    Chang, Chi-Tung
    Gau, Hwa-Long
    Wang, Kuo-Zhong
    Wu, Pei Yuan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (03) : 1170 - 1192
  • [26] Numerical ranges of Foguel operators
    Gau, Hwa-Long
    Wang, Kuo-Zhong
    Wu, Pei Yuan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 610 : 766 - 784
  • [27] NUMERICAL RANGES OF THE PRODUCT OF OPERATORS
    Du, Hongke
    Li, Chi-Kwong
    Wang, Kuo-Zhong
    Wang, Yueqing
    Zuo, Ning
    OPERATORS AND MATRICES, 2017, 11 (01): : 171 - 180
  • [28] ON OPERATORS WITH CLOSED NUMERICAL RANGES
    Ji, Youqing
    Liang, Bin
    ANNALS OF FUNCTIONAL ANALYSIS, 2018, 9 (02): : 233 - 245
  • [29] THE POSSIBLE SHAPES OF NUMERICAL RANGES
    Helton, J. William
    Spitkovsky, I. M.
    OPERATORS AND MATRICES, 2012, 6 (03): : 607 - 611
  • [30] Numerical ranges of KMS matrices
    Hwa-Long Gau
    Pei Yuan Wu
    Acta Scientiarum Mathematicarum, 2013, 79 (3-4): : 583 - 610