Data-driven distributionally robust chance-constrained optimization with Wasserstein metric

被引:48
|
作者
Ji, Ran [1 ]
Lejeune, Miguel A. [2 ]
机构
[1] George Mason Univ, Dept Syst Engn & Operat Res, Fairfax, VA 22030 USA
[2] George Washington Univ, Dept Decis Sci, Washington, DC USA
关键词
Distributionally robust optimization; Chance-constrained programming; Wasserstein metric; Mixed-integer programming;
D O I
10.1007/s10898-020-00966-0
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We study distributionally robust chance-constrained programming (DRCCP) optimization problems with data-driven Wasserstein ambiguity sets. The proposed algorithmic and reformulation framework applies to all types of distributionally robust chance-constrained optimization problems subjected to individual as well as joint chance constraints, with random right-hand side and technology vector, and under two types of uncertainties, called uncertain probabilities and continuum of realizations. For the uncertain probabilities (UP) case, we provide new mixed-integer linear programming reformulations for DRCCP problems. For the continuum of realizations case with random right-hand side, we propose an exact mixed-integer second-order cone programming (MISOCP) reformulation and a linear programming (LP) outer approximation. For the continuum of realizations (CR) case with random technology vector, we propose two MISOCP and LP outer approximations. We show that all proposed relaxations become exact reformulations when the decision variables are binary or bounded general integers. For DRCCP with individual chance constraint and random right-hand side under both the UP and CR cases, we also propose linear programming reformulations which need the ex-ante derivation of the worst-case value-at-risk via the solution of a finite series of linear programs determined via a bisection-type procedure. We evaluate the scalability and tightness of the proposed MISOCP and (MI)LP formulations on a distributionally robust chance-constrained knapsack problem.
引用
收藏
页码:779 / 811
页数:33
相关论文
共 50 条
  • [31] Distributionally Robust Chance-constrained Program Surgery Planning with Downstream Resource
    Wang, Shanshan
    Li, Jinlin
    Peng, Chun
    2017 14TH INTERNATIONAL CONFERENCE ON SERVICES SYSTEMS AND SERVICES MANAGEMENT (ICSSSM), 2017,
  • [32] Data-Driven Distributionally Robust Stochastic Control of Energy Storage for Wind Power Ramp Management Using the Wasserstein Metric
    Yang, Insoon
    ENERGIES, 2019, 12 (23)
  • [33] Soft-constrained model predictive control based on data-driven distributionally robust optimization
    Lu, Shuwen
    Lee, Jay H.
    You, Fengqi
    AICHE JOURNAL, 2020, 66 (10)
  • [34] Data-Driven Distributionally Robust Optimization for Railway Timetabling Problem
    Liu, Linyu
    Song, Shiji
    Wang, Zhuolin
    Zhang, Yuli
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2024, 21 (01) : 810 - 826
  • [35] Fast Wasserstein-Distance-Based Distributionally Robust Chance-Constrained Power Dispatch for Multi-Zone HVAC Systems
    Chen, Ge
    Zhang, Hongcai
    Hui, Hongxun
    Song, Yonghua
    IEEE TRANSACTIONS ON SMART GRID, 2021, 12 (05) : 4016 - 4028
  • [36] Data-driven distributionally robust risk parity portfolio optimization
    Costa, Giorgio
    Kwon, Roy H.
    OPTIMIZATION METHODS & SOFTWARE, 2022, 37 (05) : 1876 - 1911
  • [37] Distributionally robust optimization based chance-constrained energy management for hybrid energy powered cellular networks
    Du, Pengfei
    Lei, Hongjiang
    Ansari, Imran Shafique
    Du, Jianbo
    Chu, Xiaoli
    DIGITAL COMMUNICATIONS AND NETWORKS, 2023, 9 (03) : 797 - 808
  • [38] Distributionally robust chance-constrained kernel-based support vector machine
    Lin, Fengming
    Fang, Shu-Cherng
    Fang, Xiaolei
    Gao, Zheming
    COMPUTERS & OPERATIONS RESEARCH, 2024, 170
  • [39] Data-Driven Chance-Constrained Planning for Distributed Generation: A Partial Sampling Approach
    Jiang, Shiyi
    Cheng, Jianqiang
    Pan, Kai
    Qiu, Feng
    Yang, Boshi
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2023, 38 (06) : 5228 - 5244
  • [40] A study of distributionally robust mixed-integer programming with Wasserstein metric: on the value of incomplete data
    Ketkov, Sergey S.
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2024, 313 (02) : 602 - 615