Mirror pairs of Calabi-Yau threefolds from mirror pairs of quasi-Fano threefolds

被引:2
作者
Lee, Nam-Hoon [1 ,2 ]
机构
[1] Hongik Univ, Dept Math Educ, 42-1 Sangsu Dong, Seoul 121791, South Korea
[2] Korea Inst Adv Study, Sch Math, Seoul 130722, South Korea
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2020年 / 141卷
基金
新加坡国家研究基金会;
关键词
Calabi-Yau threefold; Smoothing; Mirror symmetry; Landau-Ginzburg model; Quasi-Fano manifold; K3; SURFACES; DEGENERATIONS; FIBRATIONS; VARIETIES; SYMMETRY;
D O I
10.1016/j.matpur.2019.12.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a new construction of mirror pairs of Calabi-Yau manifolds by smoothing normal crossing varieties, consisting of two quasi-Fano manifolds. We introduce a notion of mirror pairs of quasi-Fano manifolds with anticanonical Calabi-Yau MSC: fibrations using recent conjectures about Landau-Ginzburg models. Utilizing this notion, we give pairs of normal crossing varieties and show that the pairs of smoothed Calabi-Yau manifolds satisfy the Hodge number relations of mirror symmetry. We consider quasi-Fano threefolds that are some blow-ups of Gorenstein toric Fano threefolds and build 6518 mirror pairs of Calabi-Yau threefolds, including 79 self-mirrors. (C) 2019 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:195 / 219
页数:25
相关论文
共 34 条
[1]  
Altman R., TORIC CALABI YAU DAT
[2]   A Calabi-Yau database: threefolds constructed from the Kreuzer-Skarke list [J].
Altman, Ross ;
Gray, James ;
He, Yang-Hui ;
Jejjala, Vishnu ;
Nelson, Brent D. .
JOURNAL OF HIGH ENERGY PHYSICS, 2015, (02)
[3]  
[Anonymous], 1996, INT MATH RES NOT IMR, DOI [10.1155/S1073792896000414, DOI 10.1155/S1073792896000414]
[4]   Borcea-Voisin Calabi-Yau threefolds and invertible potentials [J].
Artebani, Michela ;
Boissiere, Samuel ;
Sarti, Alessandra .
MATHEMATISCHE NACHRICHTEN, 2015, 288 (14-15) :1581-1591
[5]  
ASPINWALL PS, 1993, DUKE MATH J, V72, P319
[6]  
Auroux D, 2008, ASTERISQUE, P99
[7]  
Batyrev V.V., 1994, J. Alg. Geom., V3, P493
[8]   Mirror duality and string-theoretic Hodge numbers [J].
Batyrev, VV ;
Borisov, LA .
INVENTIONES MATHEMATICAE, 1996, 126 (01) :183-203
[9]  
Beauville A., 1983, Progress in Mathematics, V39, P1
[10]  
Borcea C., 1997, AMS IP STUD ADV MATH, V1, P717