Lithium Transport Properties in LiMn1-αFeαPO4 Olivine Cathodes

被引:62
作者
Di Lecce, Daniele [1 ]
Hassoun, Jusef [1 ]
机构
[1] Univ Roma La Sapienza, Dept Chem, I-00185 Rome, Italy
关键词
HIGH-PERFORMANCE; ELECTROCHEMICAL PROPERTIES; SOLVOTHERMAL SYNTHESIS; LIMNPO4; LIFEPO4; TEMPERATURE; MECHANISM; KINETICS; X=0; FE;
D O I
10.1021/acs.jpcc.5b06727
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report a comparative study of the electrochemical lithium diffusion properties within the olivine structure of LiMn0.5Fe0.5PO4, LiFePO4, and LiMnPO4 materials prepared by the solvothermal pathway. The study includes careful analysis performed by potentiodynamic cycling with galvanostatic acceleration (PCGA), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and the galvanostatic intermittent titration technique (GITT), carried out in order to investigate the features of the Fe3+/Fe2+ and Mn3+/Mn2+ redox processes and the lithium ion transport within the olivine structure. The electrochemical investigation reveals a shift of the redox potential of Fe3+/Fe2+ and Mn3+/Mn2+ couples toward higher and lower values, respectively, in LiMn0.5Fe0.5PO4 with respect to the bare materials. Interestingly, the study shows the dependence of the lithium diffusion coefficients on the state of charge of the materials as well as on the adopted technique. Accordingly, CV leads to lithium diffusion coefficients of the order of 10(-12) cm(2) s(-1) for LiMnPO4, 10(-9) cm(2) s(-1) for LiFePO4, and 10(-11) cm(2) s(-1) for LiMn0.5Fe0.5PO4, LiFePO4. EIS mainly indicates lower values of lithium diffusion coefficients, i.e., 10(-13) cm(2) s(-1) for LiMnPO4, 10(-12) cm(2) s(-1) for LiFePO4, and 10(-13) cm(2) s(-1) for LiMn0.5Fe0.5PO4. GITT provides a wide range of Li+ diffusion coefficient, depending on the Li1-xMePO4 stoichiometry, that is, 10(-14)-10(-10) cm(2) s(-1) for LiMnPO4 and LiFePO4 and 10-(13)-10(-16) cm(2) s(-1) for LiMn0.5Fe0.5PO4, LiFePO4. The wide diffusion coefficient window obtained by changing the state of charge and the adopted technique sheds light on the complex trend of the lithium diffusion in olivines and indicates that the technique may actually influence the materials evaluation.
引用
收藏
页码:20855 / 20863
页数:9
相关论文
共 49 条
  • [1] LiMnPO4 - A next generation cathode material for lithium-ion batteries
    Aravindan, Vanchiappan
    Gnanaraj, Joe
    Lee, Yun-Sung
    Madhavi, Srinivasan
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (11) : 3518 - 3539
  • [2] Effect of firing temperature on the electrochemical performance of LiMn0.4Fe0.6PO4/C materials prepared by mechanical activation
    Baek, Dong-Ho
    Kim, Jae-Kwang
    Shin, Yong-Jo
    Chauhan, Ghanshyam S.
    Ahn, Jou-Hyeon
    Kim, Ki-Won
    [J]. JOURNAL OF POWER SOURCES, 2009, 189 (01) : 59 - 65
  • [3] Electrochemical performance of nanocomposite LiMnPO4/C cathode materials for lithium batteries
    Bakenov, Zhumabay
    Taniguchi, Izumi
    [J]. ELECTROCHEMISTRY COMMUNICATIONS, 2010, 12 (01) : 75 - 78
  • [4] A NONLINEAR LEAST-SQUARES FIT PROCEDURE FOR ANALYSIS OF IMMITTANCE DATA OF ELECTROCHEMICAL SYSTEMS
    BOUKAMP, BA
    [J]. SOLID STATE IONICS, 1986, 20 (01) : 31 - 44
  • [5] Controlled synthesis of LiCoPO4 by a solvo-thermal method at 220 °C
    Brutti, S.
    Manzi, J.
    De Bonis, A.
    Di Lecce, D.
    Vitucci, F.
    Paolone, A.
    Trequattrini, F.
    Panero, S.
    [J]. MATERIALS LETTERS, 2015, 145 : 324 - 327
  • [6] Brutti S., 2013, NANOTECHNOLOGY SUSTA
  • [7] Enhanced electrochemical properties of LiFe1-xMnxPO4/C composites synthesized from FePO4•2H2O nanocrystallites
    Chen, Li
    Yuan, Yong-Qiang
    Feng, Xia
    Li, Ming-Wei
    [J]. JOURNAL OF POWER SOURCES, 2012, 214 : 344 - 350
  • [8] LiMnPO4 Nanoplate Grown via Solid-State Reaction in Molten Hydrocarbon for Li-Ion Battery Cathode
    Choi, Daiwon
    Wang, Donghai
    Bae, In-Tae
    Xiao, Jie
    Nie, Zimin
    Wang, Wei
    Viswanathan, Vilayanur V.
    Lee, Yun Jung
    Zhang, Ji-Guang
    Graff, Gordon L.
    Yang, Zhenguo
    Liu, Jun
    [J]. NANO LETTERS, 2010, 10 (08) : 2799 - 2805
  • [9] One-step low-temperature route for the preparation of electrochemically active LiMnPO4 powders
    Delacourt, C
    Poizot, P
    Morcrette, M
    Tarascon, JM
    Masquelier, C
    [J]. CHEMISTRY OF MATERIALS, 2004, 16 (01) : 93 - 99
  • [10] Effect of particle size on LiMnPO4 cathodes
    Drezen, Thierry
    Kwon, Nam-Hee
    Bowen, Paul
    Teerlinck, Ivo
    Isono, Motoshi
    Exnar, Ivan
    [J]. JOURNAL OF POWER SOURCES, 2007, 174 (02) : 949 - 953