Multi-functional nano-electronics constructed using boron phosphide and silicon carbide nanoribbons

被引:55
作者
Dong, Jichen [1 ]
Li, Hui [1 ]
Li, Li [2 ]
机构
[1] Shandong Univ, Key Lab Liquid Solid Struct Evolut & Proc Mat, Minist Educ, Jinan 250061, Peoples R China
[2] Hong Kong Polytech Univ, Inst Text & Clothing, Fac Appl Sci & Text, Hong Kong, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
BP nanoribbons; density functional theory; hybrid structure; multi-functional nano-electronics; non-equilibrium Green Function; SiC nanoribbons; GRAPHENE NANORIBBONS; NITRIDE; DEVICES; PERFORMANCE; TRANSISTORS; FILMS;
D O I
10.1038/am.2013.31
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
First-principles density functional theory and non-equilibrium Green function calculations provide theoretical support for the promising applications of multi-functional nano-electronics constructed using zigzag boron phosphide (BP) nanoribbons (zBPNRs) and silicon carbide nanoribbons (zSiCNRs). The results indicate that zBPNRs are non-magnetic direct bandgap semiconductors with bandgaps of similar to 1 eV. Devices constructed using hybrid zSiC-BP-SiC nanoribbon structures are found to exhibit not only significant field-effect characteristics but also tunable negative differential resistance. Moreover, 'Y'- and 'D'-shaped nano-structures composed of zBPNRs and zSiCNRs exhibit pronounced spin polarization properties at their edges, suggesting their potential use in spintronic applications. Interestingly, a transverse electric field can convert zBPNRs to non-magnetic indirect bandgap semiconductors, ferrimagnetic semiconductors or half-metals depending on the strength and direction of the field. This study may provide a new path for the exploration of nano-electronics.
引用
收藏
页码:e56 / e56
页数:11
相关论文
共 39 条
[1]  
Alejandro L.C., 2012, INT J QUANTUM CHEM, V112, P3152
[2]   Abnormal electronic transport and negative differential resistance of graphene nanoribbons with defects [J].
An, Yipeng ;
Yang, Zhongqin .
APPLIED PHYSICS LETTERS, 2011, 99 (19)
[3]   Density-functional method for nonequilibrium electron transport -: art. no. 165401 [J].
Brandbyge, M ;
Mozos, JL ;
Ordejón, P ;
Taylor, J ;
Stokbro, K .
PHYSICAL REVIEW B, 2002, 65 (16) :1654011-16540117
[4]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[5]   Dielectric Screening Enhanced Performance in Graphene FET [J].
Chen, Fang ;
Xia, Jilin ;
Ferry, David K. ;
Tao, Nongjian .
NANO LETTERS, 2009, 9 (07) :2571-2574
[6]   Intrinsic and extrinsic performance limits of graphene devices on SiO2 [J].
Chen, Jian-Hao ;
Jang, Chaun ;
Xiao, Shudong ;
Ishigami, Masa ;
Fuhrer, Michael S. .
NATURE NANOTECHNOLOGY, 2008, 3 (04) :206-209
[7]   Negative differential resistance in molecular junctions: Application to graphene ribbon junctions [J].
Cheraghchi, Hosein ;
Esfarjani, Keivan .
PHYSICAL REVIEW B, 2008, 78 (08)
[8]  
Ci L, 2010, NAT MATER, V9, P430, DOI [10.1038/nmat2711, 10.1038/NMAT2711]
[9]   Electric Field Effects on Armchair MoS2 Nanoribbons [J].
Dolui, Kapildeb ;
Das Pemmaraju, Chaitanya ;
Sanvito, Stefano .
ACS NANO, 2012, 6 (06) :4823-4834
[10]   Negative differential resistance of electrons in graphene barrier [J].
Dragoman, D. ;
Dragoman, M. .
APPLIED PHYSICS LETTERS, 2007, 90 (14)