Multi-functional nano-electronics constructed using boron phosphide and silicon carbide nanoribbons

被引:54
作者
Dong, Jichen [1 ]
Li, Hui [1 ]
Li, Li [2 ]
机构
[1] Shandong Univ, Key Lab Liquid Solid Struct Evolut & Proc Mat, Minist Educ, Jinan 250061, Peoples R China
[2] Hong Kong Polytech Univ, Inst Text & Clothing, Fac Appl Sci & Text, Hong Kong, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
BP nanoribbons; density functional theory; hybrid structure; multi-functional nano-electronics; non-equilibrium Green Function; SiC nanoribbons; GRAPHENE NANORIBBONS; NITRIDE; DEVICES; PERFORMANCE; TRANSISTORS; FILMS;
D O I
10.1038/am.2013.31
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
First-principles density functional theory and non-equilibrium Green function calculations provide theoretical support for the promising applications of multi-functional nano-electronics constructed using zigzag boron phosphide (BP) nanoribbons (zBPNRs) and silicon carbide nanoribbons (zSiCNRs). The results indicate that zBPNRs are non-magnetic direct bandgap semiconductors with bandgaps of similar to 1 eV. Devices constructed using hybrid zSiC-BP-SiC nanoribbon structures are found to exhibit not only significant field-effect characteristics but also tunable negative differential resistance. Moreover, 'Y'- and 'D'-shaped nano-structures composed of zBPNRs and zSiCNRs exhibit pronounced spin polarization properties at their edges, suggesting their potential use in spintronic applications. Interestingly, a transverse electric field can convert zBPNRs to non-magnetic indirect bandgap semiconductors, ferrimagnetic semiconductors or half-metals depending on the strength and direction of the field. This study may provide a new path for the exploration of nano-electronics.
引用
收藏
页码:e56 / e56
页数:11
相关论文
共 39 条
  • [1] Alejandro L.C., 2012, INT J QUANTUM CHEM, V112, P3152
  • [2] Abnormal electronic transport and negative differential resistance of graphene nanoribbons with defects
    An, Yipeng
    Yang, Zhongqin
    [J]. APPLIED PHYSICS LETTERS, 2011, 99 (19)
  • [3] Density-functional method for nonequilibrium electron transport -: art. no. 165401
    Brandbyge, M
    Mozos, JL
    Ordejón, P
    Taylor, J
    Stokbro, K
    [J]. PHYSICAL REVIEW B, 2002, 65 (16) : 1654011 - 16540117
  • [4] The electronic properties of graphene
    Castro Neto, A. H.
    Guinea, F.
    Peres, N. M. R.
    Novoselov, K. S.
    Geim, A. K.
    [J]. REVIEWS OF MODERN PHYSICS, 2009, 81 (01) : 109 - 162
  • [5] Dielectric Screening Enhanced Performance in Graphene FET
    Chen, Fang
    Xia, Jilin
    Ferry, David K.
    Tao, Nongjian
    [J]. NANO LETTERS, 2009, 9 (07) : 2571 - 2574
  • [6] Intrinsic and extrinsic performance limits of graphene devices on SiO2
    Chen, Jian-Hao
    Jang, Chaun
    Xiao, Shudong
    Ishigami, Masa
    Fuhrer, Michael S.
    [J]. NATURE NANOTECHNOLOGY, 2008, 3 (04) : 206 - 209
  • [7] Negative differential resistance in molecular junctions: Application to graphene ribbon junctions
    Cheraghchi, Hosein
    Esfarjani, Keivan
    [J]. PHYSICAL REVIEW B, 2008, 78 (08)
  • [8] Ci L, 2010, NAT MATER, V9, P430, DOI [10.1038/nmat2711, 10.1038/NMAT2711]
  • [9] Electric Field Effects on Armchair MoS2 Nanoribbons
    Dolui, Kapildeb
    Das Pemmaraju, Chaitanya
    Sanvito, Stefano
    [J]. ACS NANO, 2012, 6 (06) : 4823 - 4834
  • [10] Negative differential resistance of electrons in graphene barrier
    Dragoman, D.
    Dragoman, M.
    [J]. APPLIED PHYSICS LETTERS, 2007, 90 (14)