Traffic Light Detection Using Rotated Principal Component Analysis for Video-Based Car Navigation System

被引:3
作者
Joo, Sung-Kwan [1 ]
Kim, Yongkwon [1 ]
Cho, Seong Ik [2 ]
Choi, Kyoungho [3 ]
Lee, Kisung [1 ]
机构
[1] Korea Univ, Seoul, South Korea
[2] ETRI, Taejon, South Korea
[3] Mokpo Natl Univ, Mokpo, South Korea
关键词
car navigation system; traffic light; crossroad detection; principal component analysis;
D O I
10.1093/ietisy/e91-d.12.2884
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This letter presents a novel approach for traffic light detection in a video frame Captured by an in-vehicle camera. The algorithm consists of rotated principal component analysis (RPCA), modified amplitude thresholding with respect to the histograms of the PC planes and final filtering with a neural network. The proposed algorithm achieves an average detection rate of 96% and is very robust to variations ill the image quality.
引用
收藏
页码:2884 / 2887
页数:4
相关论文
共 9 条
[1]  
Barlow M, 2001, J CLIMATE, V14, P2105, DOI 10.1175/1520-0442(2001)014<2105:EPDVAU>2.0.CO
[2]  
2
[3]  
Bishop CM., 1995, Neural networks for pattern recognition
[4]  
Hwang TH, 2006, LECT NOTES COMPUT SC, V4319, P682
[5]  
Jain A. K., 1988, FUNDAMENTALS DIGITAL
[6]  
Jeong SG, 2001, ISIE 2001: IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS PROCEEDINGS, VOLS I-III, P1466, DOI 10.1109/ISIE.2001.931922
[7]   Design and implementation of 4S-Van: A mobile mapping system [J].
Lee, Seung-Yong ;
Choi, Kyoung-Ho ;
Joo, In-Hak ;
Cho, Seong-Ik ;
Park, Jong-Hyun .
ETRI JOURNAL, 2006, 28 (03) :265-274
[8]  
Lindner F, 2004, 2004 IEEE INTELLIGENT VEHICLES SYMPOSIUM, P49
[9]  
Narzt W, 2004, LECT NOTES COMPUT SC, V3196, P440